

Reference Manual

Volume III
Interfaces Guide

Version 6.4.1

Copyright © 2023 Secret Society Software, LLC

 CLIPS Reference Manual

CLIPS Interfaces Guide i

CLIPS Interfaces Guide

Version 6.4.1 April 8th 2023

CONTENTS

License Information ... vi

Preface .. vii

Section 1: Introduction ...1

Section 2: CLIPS .NET IDE ...2
2.1 The File Menu ..3

2.1.1 Quit ...3

2.2 The Edit Menu ...3
2.2.1 Cut (Ctrl+X) ..3
2.2.2 Copy (Ctrl+C) ...3
2.2.3 Paste (Ctrl+V) ...3
2.2.4 Set Dialog Font... (Ctrl+V) ...4

2.2.5 Set Browser Font... (Ctrl+V)...4
2.3 The Environment Menu ...4

2.3.1 Clear ..4
2.3.2 Load Constructs... (Ctrl+L) ...4
2.3.3 Load Batch... (Ctrl+Shift+L) ..4

2.3.4 Set Directory… ...4
2.3.5 Reset (Ctrl+R) ...5
2.3.6 Run (Ctrl+Shift+R) ...5
2.3.7 Halt Rules (Ctrl+H)...5
2.3.8 Halt Execution (Ctrl+Shift+H) ...5
2.3.9 Clear Scrollback ..5

2.5 The Debug Menu ...5
2.5.1 Watch Submenu ..5
2.5.2 Agenda Browser..5
2.5.3 Fact Browser ...6

2.5.4 Instance Browser ...7

2.6 The Help Menu ..8
2.6.1 CLIPS Home Page ..8
2.6.2 Online Documentation ..8
2.6.3 Online Examples ...8
2.6.4 CLIPS Expert System Group ..8

2.6.5 SourceForge Forums ...9
2.6.6 Stack Overflow Q&A ...9

2.6.7 About CLIPS IDE ...9
2.8 Building the Windows Executables ...9

CLIPS Reference Manual

ii Table of Contents

2.8.1 Building CLIPSIDE Using Microsoft Visual Studio Community 20229
2.8.2 Building CLIPSDOS Using Microsoft Visual Studio Community 20229

Section 3: CLIPS macOS IDE ...11
3.1 The CLIPS IDE Menu ...13

3.1.1 About CLIPS ...13
3.1.2 Preferences... (⌘,) ..14
3.1.3 Quit CLIPS IDE (⌘Q) ...15

3.2 The File Menu ..15
3.2.1 New (⌘N) ..15
3.2.2 Open... (⌘O) ..16

3.2.3 Open Recent ..16
3.2.4 Close (⌘W) ..16

3.2.5 Save (⌘S) ..16

3.2.6 Save As... (⇧⌘S) ..16

3.2.7 Revert ..16
3.2.8 Page Setup... (⇧⌘P) ...16
3.2.9 Print... (⌘P) ...17

3.3 The Edit Menu ...17
3.3.1 Undo (⌘Z) ...17
3.3.2 Redo (⇧⌘Z) ...17
3.3.3 Cut (⌘X) ..17
3.3.4 Copy (⌘C) ...17
3.3.5 Paste (⌘V) ...17

3.3.6 Delete ..18
3.3.7 Select All (⌘A) ..18

3.3.8 Find Submenu ...18
3.4 The Text Menu ...19

3.4.1 Load Selection (⌘K)..19

3.4.2 Batch Selection (⇧⌘K) ..19

3.4.3 Load Buffer ...19
3.4.4 Balance (⌘B) ...20

3.4.5 Comment ...20
3.4.6 Uncomment ...20

3.5 The Environment Menu ...20
3.5.1 Clear ..20
3.5.2 Load Constructs... (⌘L) ...20
3.5.3 Load Batch... (⇧⌘L) ..20

3.5.4 Set Directory… ...21
3.5.5 Reset (⌘R) ...21

3.5.6 Run (⇧⌘R) ...21

3.5.7 Halt Rules (⌘.) ..21
3.5.8 Halt Execution (⇧⌘.) ...21

 CLIPS Reference Manual

CLIPS Interfaces Guide iii

3.5.9 Clear Scrollback ..21
3.6 The Debug Menu ...21

3.6.1 Watch Submenu ..21

3.6.2 Agenda Browser..22
3.6.3 Fact Browser ...22
3.6.4 Instance Browser ...24
3.6.5 Construct Inspector ...25

3.7 The Window Menu ..25

3.8 The Help Menu ..25
3.8.1 CLIPS Home Page ..25
3.8.2 Online Documentation ..25
3.8.3 Online Examples ...25
3.8.4 CLIPS Expert System Group ..26

3.8.5 SourceForge Forums ...26

3.8.6 Stack Overflow Q&A ...26
3.9 Creating the macOS Executables ...26

3.9.1 Building the CLIPS IDE Using Xcode 14.3 ...26

Section 4: CLIPS Swing IDE ...27

4.2 The File Menu ..28

4.2.1 New (^-N) ..28

4.2.2 Open... (^-O) ..28

4.2.3 Save (^-S)...29

4.2.4 Save As... (^+⇧-S) ...29

4.2.5 Page Setup... ..29
4.2.6 Print... ..29

4.2.7 Quit CLIPS IDE (^-Q) ...29

4.3 The Edit Menu ...29

4.3.1 Undo (^-Z) ...29

4.3.2 Redo (^+⇧-Z) ...29

4.3.3 Cut (^-X) ..30

4.3.4 Copy (^-C) ...30

4.3.5 Paste (^-V) ...30

4.3.6 Set Font... ..30

4.4 The Text Menu ...30

4.4.1 Load Selection (^-K) ..30

4.4.2 Batch Selection (^+⇧-K) ..30

4.4.3 Load Buffer ...31

4.4.4 Balance (^-B) ...31

4.4.5 Comment ...31

4.4.6 Uncomment ...31
4.5 The Environment Menu ...31

CLIPS Reference Manual

iv Table of Contents

4.5.1 Clear ..31

4.5.2 Load Constructs... (^-L) ...31

4.5.3 Load Batch... (^+⇧-L) ..32

4.5.4 Set Directory… ...32

4.5.5 Reset (^-R) ...32

4.5.6 Run (^+⇧-R) ...32

4.5.7 Halt Rules (^-.) ...32

4.5.8 Halt Execution (^+⇧-.) ...32

4.5.9 Clear Scrollback ..32
4.6 The Debug Menu ...33

4.6.1 Watch Submenu ..33
4.6.2 Agenda Browser..33
4.6.3 Fact Browser ...33

4.6.4 Instance Browser ...34
4.6.5 Construct Inspector ...36

4.7 The Window Menu ..36
4.8 The Help Menu ..36

4.8.1 CLIPS Home Page ..36

4.8.2 Online Documentation ..36
4.8.3 Online Examples ...36
4.8.4 CLIPS Expert System Group ..36
4.8.5 SourceForge Forums ...37
4.8.6 Stack Overflow Q&A ...37

4.8.7 About CLIPS IDE ...37
4.9 Creating the Swing IDE Executable ..37

Section 5: CLIPS DLL Interface ...38
5.1 Installing the Source Code ...38
5.2 Building the CLIPS Libraries ..38

5.2.1 Building the Projects Using Microsoft Visual Studio Community 202239
5.3 Running the Library Examples ..39

5.3.1 Building the Examples Using Microsoft Visual Studio Community 2022...............39

Section 6: CLIPS .NET Interface ..41

6.1 Installing the Source Code ...41
6.2 Building the .NET Library and Example Executables ...41

6.2.1 Building the Projects Using Microsoft Visual Studio Community 202242
6.3 Running the .NET Demo Programs ...42

6.3.1 Wine Demo ...42

6.3.2 Auto Demo ..43

6.3.3 Animal Demo ..43
6.3.4 Router Demo ...44

6.4 CLIPS .NET Classes ..44

 CLIPS Reference Manual

CLIPS Interfaces Guide v

6.4.1 The Environment Class ...44
6.5.2 The PrimitiveValue Class and Subclasses ..50
6.5.3 The CLIPSException and CLIPSLoadException Classes ..54

6.5.4 The Router Class ...54
6.5.5 The UserFunction Class ..56
6.5.6 Examples ...57

Section 7: CLIPS Java Native Interface ...62

7.1 CLIPSJNI Directory Structure ...62
7.2 Issuing Commands from the Terminal ..63
7.3 Running CLIPSJNI in Command Line Mode ..64
7.4 Running the Swing Demo Programs..64

7.4.1 Sudoku Demo..65

7.4.2 Wine Demo ...65

7.4.3 Auto Demo ..66
7.4.4 Animal Demo ..67
7.4.5 Router Demo ...67

7.5 Creating the CLIPSJNI JAR File ...68
7.6 Creating the CLIPSJNI Native Library..69

7.6.1 Creating the Native Library on macOS ..69
7.6.2 Creating the Native Library on Windows 11 ..70
7.6.3 Creating the Native Library On Linux ..70

7.7 Recompiling the Swing Demo Programs ...70
7.7.1 Recompiling the Swing Demo Programs on macOS ..70

7.7.2 Recompiling the Swing Demo Programs on Windows ..71
7.7.3 Recompiling the Swing Demo Programs on Linux ..71

7.8 Internationalizing the Swing Demo Programs ...71
7.9 CLIPSJNI Classes ..73

7.9.1 The Environment Class ...73

7.9.2 The PrimitiveValue Class and Subclasses ..79
7.9.3 The CLIPSException and CLIPSLoadException Classes ..82
7.9.4 The Router Interface ...83
7.9.5 The UserFunction Interface ..85
7.9.6 Examples ...85

Appendix A: Support Information ..91
A.1 Questions and Information ..91
A.2 Documentation ..91
A.3 CLIPS Source Code and Executables ...91

Appendix B: Update Release Notes ...92

Index ..93

CLIPS Reference Manual

vi License Information

License Information

MIT No Attribution

Copyright 2023 Secret Society Software, LLC

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and

associated documentation files (the "Software"), to deal in the Software without restriction,

including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense,

and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do

so.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,

INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A

PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR

COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN

AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION

WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

 CLIPS Reference Manual

CLIPS Interfaces Guide vii

Preface

About CLIPS

Developed at NASA’s Johnson Space Center from 1985 to 1996, the ‘C’ Language Integrated

Production System (CLIPS) is a rule-based programming language useful for creating expert

systems and other programs where a heuristic solution is easier to implement and maintain than an

algorithmic solution. Written in C for portability, CLIPS can be installed and used on a wide

variety of platforms. Since 1996, CLIPS has been available as public domain software.

CLIPS Version 6.4

Version 6.4 of CLIPS includes three major enhancements: a redesigned C Application

Programming Interface; wrapper classes and example programs for .NET and Java; and Integrated

Development Environments with Unicode support for Windows and Java. For a detailed listing of

differences between releases of CLIPS, refer to appendix B of the Basic Programming Guide and

appendix B of the Advanced Programming Guide.

CLIPS Documentation

Two documents are provided with CLIPS.

• The CLIPS Reference Manual which is split into several volumes:

• Volume I - The Basic Programming Guide provides information on the CLIPS

programming language.

• Volume II - The Advanced Programming Guide provides information on compiling CLIPS

and use of the C Application Programming Interfaces.

• Volume III - The Interfaces Guide provides information on the CLIPS Integrated

Development Environments, wrapper classes, and example programs.

• The CLIPS User’s Guide provides an introduction to CLIPS and rule-based programming.

CLIPS Reference Manual

viii Preface

Other Documentation

 Adventures in Rule-Based Programming is a fun

introduction to writing applications using CLIPS. In this

tutorial you’ll learn the basic concepts of rule-based

programming, where rules are used to specify the logic of

what must be accomplished, but an inference engine

determines when rules are applied. You’ll incrementally

create a fully functional text adventure game, and in the

process, learn how to write, organize, debug, test, and

deploy CLIPS code. Visit clipsrules.net/airbp for more

information.

http://clipsrules.net/airbp

 CLIPS Reference Manual

CLIPS Interfaces Guide 1

Section 1:

Introduction

This manual is the Interfaces Guide for CLIPS. It is intended for users interested in using the

Integrated Development Environments (IDEs) for Windows, macOS, and Java; the wrapper

classes for .NET and Java; and the example programs for .NET and Java. Section 2 of this manual

describes the Windows IDE for CLIPS. Section 3 describes the macOS IDE for CLIPS. Section 4

describes the Java Swing IDE for CLIPS. Section 5 describes the CLIPS DLL Interface. Section 6

describes the CLIPS .NET Interface. Section 7 describes the CLIPS Java Native Interface.

CLIPS Reference Manual

2 Section 2: CLIPS .NET IDE

Section 2:

CLIPS .NET IDE

This section provides a brief summary of the CLIPS 6.4 .NET Integrated Development

Environment (IDE). The IDE provides a dialog pane that allows commands to be entered in a

manner similar to the standard CLIPS command line interface. Any CLIPS I/O to standard input

or standard output is directed to this dialog pane. In addition, the IDE also provides a browser pane

for examining the current state of the CLIPS environment. When launched, the IDE displays a

window containing a menu bar, a status bar, and a dialog pane:

The status bar is displayed beneath the menu bar. On the left side of the status bar is the current

working directory. The splitter along the bottom edge of the dialog pane can be dragged to reveal

or hide any browser tabs that are open in the browser pane.

Inline editing is supported in the dialog pane. The left and right arrow keys can be used to move

the caret backwards and forwards through the current command. Pressing the delete key will delete

the character to the left of the caret. Insertion of other characters or pasted text occurs at the caret.

The esc key moves the caret to the end of the current command. The caret must be at the end of

the current command in order for pressing the return key to execute the command.

 CLIPS Reference Manual

CLIPS Interfaces Guide

3

A command history is also supported for the dialog pane. The up and down arrows allow you to

cycle through the command history. The up arrow restores the previous command and the down

arrow restores the next command. Holding the shift key down when the up or down arrow is

pressed takes you respectively to the beginning or end of the command history.

From the CLIPS command prompt, the command clear-window (which takes no arguments) will

also clear all of the text in the dialog pane.

Holding down the control key while pressing the period key will halt rule execution. The RHS

actions of the currently executing rule will be allowed to complete before rule execution is halted.

Holding down the shift key, the control key, and the H key will halt rule execution after the current

RHS action. Remaining RHS actions will not be executed. This key combination can also be used

to halt the execution of commands and functions that loop. The Halt Rules menu item can also be

selected from the Environment menu during execution. Selecting this menu item is equivalent to

holding down the control key while pressing the H key. The Halt Execution menu item can also

be selected from the Environment menu during execution. Selecting this menu item is equivalent

to holding down the shift key and the control key while pressing the H key.

2.1 The File Menu

2.1.1 Quit

This command exits CLIPS.

2.2 The Edit Menu

2.2.1 Cut (Ctrl+X)

This command removes selected text in the dialog pane and places it in the Clipboard. Only

selected text from the current command being entered can be cut.

2.2.2 Copy (Ctrl+C)

This command copies selected text in the dialog pane and places it in the Clipboard.

2.2.3 Paste (Ctrl+V)

This command copies the contents of the Clipboard to the selection point or selected text in the

dialog pane. Text can only be pasted into the current command being entered.

CLIPS Reference Manual

4 Section 2: CLIPS .NET IDE

2.2.4 Set Dialog Font... (Ctrl+V)

This command allows the font used in the main dialog window to be changed.

2.2.5 Set Browser Font... (Ctrl+V)

This command allows the font used for displaying data in the browser tabs to be changed.

2.3 The Environment Menu

2.3.1 Clear

This command is equivalent to the CLIPS command (clear). When this command is chosen, the

CLIPS command (clear) will be echoed to the dialog pane and executed. This command is not

available when CLIPS is executing.

2.3.2 Load Constructs... (Ctrl+L)

This command displays a file selection dialog, allowing the user to select a text file containing

constructs to be loaded into CLIPS. This command is equivalent to the CLIPS command (load

<file-name>). When this command is chosen and a file is selected, the appropriate CLIPS load

command will be echoed to the dialog pane and executed.

2.3.3 Load Batch... (Ctrl+Shift+L)

This command displays a file selection dialog, allowing the user to select a text file to be executed

as a batch file. This command is equivalent to the CLIPS command (batch <file-name>). When

this command is chosen and a file is selected, the appropriate CLIPS batch command will be

echoed to the dialog pane and executed.

2.3.4 Set Directory…

This command displays a folder selection dialog, allowing the user to select the current directory

associated with the CLIPS environment. File commands such as load, batch, and open use the

current directory to determine the location where file operations should occur. The current

directory for the dialog pane is displayed in the status bar.

 CLIPS Reference Manual

CLIPS Interfaces Guide

5

2.3.5 Reset (Ctrl+R)

This command is equivalent to the CLIPS command (reset). When this command is chosen, the

CLIPS command (reset) will be echoed to the dialog pane and executed.

2.3.6 Run (Ctrl+Shift+R)

This command is equivalent to the CLIPS command (run). When this command is chosen, the

CLIPS command (run) will be echoed to the dialog pane and executed.

2.3.7 Halt Rules (Ctrl+H)

This command halts execution when the currently executing rule has finished executing all of its

actions. This command has no effect if rules are not executing.

2.3.8 Halt Execution (Ctrl+Shift+H)

This command halts execution at the first available opportunity. If rules are executing, the

currently executing rule may not complete all of its actions.

2.3.9 Clear Scrollback

This command clears all of the text in the dialog pane. From the CLIPS command prompt, the

command clear-window (which takes no arguments) will also clear all of the text in the dialog

pane.

2.5 The Debug Menu

2.5.1 Watch Submenu

Watch items can be enabled or disabled by the appropriate menu item. Enabled watch items have

a check to the left of the menu item. Disabled watch items have no check mark in their check box.

Choosing the All menu item checks all of the watch items. Choosing the None menu item unchecks

all of the watch items.

2.5.2 Agenda Browser

The Agenda Browser allows the activations on the agenda to be examined. The list on the left

side of the browser shows the modules currently on the focus stack. The list of the right side of the

browser shows the activations on the agenda of the selected module from the focus stack.

CLIPS Reference Manual

6 Section 2: CLIPS .NET IDE

The Reset button sends a “(reset)” command to the dialog pane. The Run button sends a “(run)”

command to the dialog pane. The Step button sends a “(run 1)” command to the dialog pane.

Pressing the Halt Rules button when rules are executing will halt execution when the currently

executing rule has finished all of its actions.

2.5.3 Fact Browser

The Fact Browser allows the facts in the fact list to be examined. The list on the left side of the

browser shows the modules currently defined. The list in the middle of the browser shows the facts

that are visible to the selected module from the module list. The list on the right side of the browser

shows the slot values of the selected fact from the fact list.

 CLIPS Reference Manual

CLIPS Interfaces Guide

7

The list of facts can be sorted based on either the fact index or the associated deftemplate name by

clicking on either the Index or the Template column header. The list of slots can be sorted based

on either the slot name or the slot value by clicking on either the Slot or the Value column header.

If the Display Defaulted Values checkbox is enabled, then all of the slots of the selected fact will

be displayed. If the checkbox is disabled, then only those slots that have a value different from

their default slot value will be displayed.

The search text field can be used to filter the facts that are displayed in the fact list. When search

text is entered and the return key is pressed each fact and its slots are examined to determine if the

search text is found within one of the following templates:

f-<index>
<deftemplate-name> <slot-name> <slot-value>

For example, if the fact associated with the deftemplate thing had a fact index of 4 and slots name

with value big-pillow, location with value t2-2, and on-top-of with value red-couch, then the fact

would be displayed in the fact list only if the search text was found in one of the following strings:

f-4
thing name big-pillow
thing location t2-2
thing on-top-of red-couch

2.5.4 Instance Browser

The Instance Browser allows the instances in the instance list to be examined. The list on the left

side of the browser shows the modules currently defined. The list in the middle of the browser

shows the instances that are visible to the selected module from the module list. The list on the

right side of the browser shows the slot values of the selected instance from the instance list.

CLIPS Reference Manual

8 Section 2: CLIPS .NET IDE

The list of instances can be sorted based on either the instance name or the associated defclass

name by clicking on either the Name or the Class column header. The list of slots can be sorted

based on either the slot name or the slot value by clicking on either the Slot or the Value column

header. If the Display Defaulted Values checkbox is enabled, then all of the slots of the selected

instance will be displayed. If the checkbox is disabled, then only those slots that have a value

different from their default slot value will be displayed.

The search text field can be used to filter the instances that are displayed in the instance list. When

search text is entered and the return key is pressed each instance and its slots are examined to

determine if the search text is found within one of the following templates:

[<name>]
<defclass-name> <slot-name> <slot-value>

For example, if the instance associated with the defclass THING had the instance name [thing1]

and slots name with value big-pillow, location with value t2-2, and on-top-of with value red-couch,

then the instance would be displayed in the instance list only if the search text was found in one of

the following strings:

[thing1]
THING name big-pillow
THING location t2-2
THING on-top-of red-couch

2.6 The Help Menu

2.6.1 CLIPS Home Page

Opens the CLIPS Home web page on SourceForge.

2.6.2 Online Documentation

Opens a web page with links to CLIPS Documentation including the CLIPS User’s Guide, CLIPS

Reference Manuals, and other Documentation.

2.6.3 Online Examples

Opens a web page with links to example programs.

2.6.4 CLIPS Expert System Group

Opens the CLIPS Expert System Group web page on Google Groups.

 CLIPS Reference Manual

CLIPS Interfaces Guide

9

2.6.5 SourceForge Forums

Opens the CLIPS Discussion Forums web page on SourceForge.

2.6.6 Stack Overflow Q&A

Opens the Stack Overflow web page for the CLIPS question tag.

2.6.7 About CLIPS IDE

This command displays version information about the CLIPS IDE application.

2.8 Building the Windows Executables

In order to create the Windows executables, you must install the source code by downloading the

clips_windows_projects_641.zip file (see appendix A for information on obtaining CLIPS). Once

downloaded, you must then extract the contents of the file by right clicking on it and selecting the

Extract All… menu item. Drag the clips_windows_projects_641 directory into the directory

you’ll be using for development. In addition to the source code specific to the Windows projects,

the core CLIPS source code is also included, so there is no need to download this code separately.

2.8.1 Building CLIPSIDE Using Microsoft Visual Studio Community 2022

Navigate to the MVS_2022 directory. Open the file CLIPS.sln by double clicking on it or right

click on it and select the Open menu item. After the file opens in Visual Studio, select

Configuration Manager… from the Build menu. Select the Release configuration for

CLIPSIDE, the appropriate platform (either x64 for a 64-bit system or x86 for a 32-bit system),

and then click the Close button. Right click on the CLIPSIDE project name in the Solution

Explorer and select the Build menu item. When compilation is complete, the CLIPSIDE

executable will be in the corresponding <Platform>\<Configuration> directory of

MVS_2022\CLIPSIDE\bin.

2.8.2 Building CLIPSDOS Using Microsoft Visual Studio Community 2022

Navigate to the MVS_2022 directory. Open the file CLIPS.sln by double clicking on it or right

click on it and select the Open menu item. After the file opens in Visual Studio, select

Configuration Manager… from the Build menu. Select the Release configuration for

CLIPSDOS, the appropriate platform (either x64 for a 64-bit system or Win32 for a 32-bit system),

and then click the Close button. Right click on the CLIPSDOS project name in the Solution

Explorer and select the Build menu item. When compilation is complete, the CLIPSDOS

CLIPS Reference Manual

10 Section 2: CLIPS .NET IDE

executable will be in the corresponding <Platform>\<Configuration> directory of the

MVS_2022\CLIPSDOS\Executables.

 CLIPS Reference Manual

CLIPS Interfaces Guide

11

Section 3:
CLIPS macOS IDE

This section provides a brief summary of the CLIPS 6.4 macOS Integrated Development

Environment (IDE). The IDE provides a dialog window that allows commands to be entered in a

manner similar to the standard CLIPS command line interface. Any CLIPS I/O to standard input

or standard output is directed to this dialog window. In addition, the IDE also provides browser

windows for examining the current state of the CLIPS environment. When launched, the IDE

displays a dialog window:

A status bar is displayed beneath the title bar. On the left side of the status bar is the current

working directory. A Pause button is on the right side of the status bar. The CLIPS IDE is multi-

threaded and uses a separate thread to execute commands entered in the dialog window. Pressing

the Pause button while a command is executing will suspend execution of the command thread.

This is useful if you need to examine the output of the executing program. Pressing the Pause

button a second time will resume execution of the command thread.

CLIPS Reference Manual

12 Section 3: CLIPS macOS IDE

Inline editing is supported in the dialog window. The left and right arrow keys can be used to move

the caret backwards and forwards through the current command. Pressing the delete key will delete

the character to the left of the caret. Insertion of other characters or pasted text occurs at the caret.

The esc key moves the caret to the end of the current command. The caret must be at the end of

the current command in order for pressing the return key to execute the command.

A command history is also supported for the dialog window. The up and down arrows allow you

to cycle through the command history. The up arrow restores the previous command and the down

arrow restores the next command. Holding the shift key down when the up or down arrow is

pressed takes you respectively to the beginning or end of the command history.

From the CLIPS command prompt, the command clear-window (which takes no arguments) will

also clear all of the text in the dialog window.

Holding down the command key while pressing the period key will halt rule execution. The RHS

actions of the currently executing rule will be allowed to complete before rule execution is halted.

Holding down the shift key, the command key, and the period key will halt rule execution after

the current RHS action. Remaining RHS actions will not be executed. This key combination can

also be used to halt the execution of commands and functions that loop. The Halt Rules menu

item can also be selected from the Environment menu during execution. Selecting this menu item

is equivalent to holding down the command key while pressing the period key. The Halt

Execution menu item can also be selected from the Environment menu during execution. Selecting

this menu item is equivalent to holding down the shift key and the command key while pressing

the period key.

The interface also provides a text editor for writing CLIPS programs. Editing windows contain a

control strip with a drop-down menu and a content area for text:

 CLIPS Reference Manual

CLIPS Interfaces Guide

13

Newly created editing windows begin with the word Untitled in their title bar. If an editing window

is associated with a file, then the title bar will contain the file name. Beneath the title bar is a

control strip. The drop-down menu on the left side of the strip provides access to the same menu

items that are in the Text menu. In the window shown previously, selecting the Load Selection

menu item (either from the action menu or the Text menu) would load the selection in the editing

window in the Dialog window.

3.1 The CLIPS IDE Menu

3.1.1 About CLIPS

This command displays version information about the CLIPS IDE application.

CLIPS Reference Manual

14 Section 3: CLIPS macOS IDE

3.1.2 Preferences... (⌘,)

This command displays a dialog box that allows the user to set the parameters for several options

in the CLIPS MacOS IDE. With any tab selected, clicking the Default button restores the default

settings for all tabs in the dialog.

3.1.2.1 Dialog Tab

The Dialog tab allows text options for the dialog window to be set.

The Change… button allows the font used in the editing windows to be changed. When you click

this button, a Fonts dialog will appear. Select a font or font size from the Font dialog and the text

in the Dialog tab will change to reflect the new font or font size.

The Balance Parentheses check box, if enabled, causes the matching left parenthesis to be

momentarily highlighted whenever a right parenthesis is type or the cursor is moved immediately

after a right parenthesis in the Dialog window.

3.1.2.2 Editor Tab

The Editor tab allows text options for editing windows to be set.

 CLIPS Reference Manual

CLIPS Interfaces Guide

15

The Change… button allows the font used in the editing windows to be changed. When you click

this button, a Fonts dialog will appear. Select a font or font size from the Font dialog and the text

in the Editor tab will change to reflect the new font or font size.

The Balance Parentheses check box, if enabled, causes the matching left parenthesis to be

momentarily highlighted whenever a right parenthesis is type or the cursor is moved immediately

after a right parenthesis in an editing window.

3.1.3 Quit CLIPS IDE (⌘Q)

This command causes the CLIPS IDE to quit. The user will be prompted to save any files with

unsaved changes.

3.2 The File Menu

3.2.1 New (⌘N)

This command opens a new buffer for editing with the window name Untitled.

CLIPS Reference Manual

16 Section 3: CLIPS macOS IDE

3.2.2 Open... (⌘O)

This command displays the standard file selection dialog sheet, allowing the user to select a text

file to be opened in a window for editing. More than one file can be opened at the same time,

however, the same file cannot be opened more than once. As files are opened, they are

automatically stacked.

3.2.3 Open Recent

This command displays a list of recently opened files, allowing the user to select a text file to be

opened as a buffer for editing.

3.2.4 Close (⌘W)

This command closes the active window if it has red close button in its upper left corner. If the

active window is an editing window that has been modified since it was last saved, an alert sheet

will confirm whether the changes should be saved or discarded or whether the close command

should be canceled.

3.2.5 Save (⌘S)

This command saves the file in the active edit window. If the file is untitled, a save file dialog

sheet will prompt for a file name under which to save the file.

3.2.6 Save As... (⇧⌘S)

This command allows the active edit window to be saved under a new name. A save file dialog

sheet will appear to prompt for the new file name. The name of the editing window will be changed

to the new file name.

3.2.7 Revert

This command restores the active edit window to the last-saved version of the file in the buffer.

Any changes made since the file was last saved will be discarded.

3.2.8 Page Setup... (⇧⌘P)

This command allows the user to specify information about the size of paper used by the printer.

 CLIPS Reference Manual

CLIPS Interfaces Guide

17

3.2.9 Print... (⌘P)

This command allows the user to print the active edit window.

3.3 The Edit Menu

3.3.1 Undo (⌘Z)

This command allows you to undo your last editing operation. Typing, cut, copy, paste, and delete

operations can all be undone. The Undo menu item will change in the Edit menu to reflect the last

operation performed. For example, if a Paste command was just performed, the Undo menu item

will read Undo Paste.

3.3.2 Redo (⇧⌘Z)

This command allows you to redo your last editing operation. Typing, cut, copy, paste, and delete

operations can all be redone. The Redo menu item will change in the Edit menu to reflect the last

operation performed. For example, if a Paste command was just performed, the Redo menu item

will read Undo Paste.

3.3.3 Cut (⌘X)

This command removes selected text in the active edit window or the dialog window and places it

in the Clipboard. In the dialog window, only selected text from the current command being entered

can be cut.

3.3.4 Copy (⌘C)

This command copies selected text in the active edit window or the dialog window and places it

in the Clipboard.

3.3.5 Paste (⌘V)

This command copies the contents of the Clipboard to the selection point in the active edit window

or the dialog window. If the selected text is in the active edit window, it is replaced by the contents

of the Clipboard. In the dialog window, text can only be pasted/replaced in the current command

being entered.

CLIPS Reference Manual

18 Section 3: CLIPS macOS IDE

3.3.6 Delete

This command removes selected text in the active edit window or the display window. The selected

text is not placed in the Clipboard.

3.3.7 Select All (⌘A)

This command selects all of the text in the active edit or display window.

3.3.8 Find Submenu

3.3.8.1 Find... (F)

This command displays a dialog box which allows the user to set parameters for text search and

replacement operations. The dialog box that appears allows a search and replacement string to be

specified.

Three other options can be set in the search dialog box. The Ignore Case option makes the string

search operation case-insensitive for alphabetic characters; that is, the string “Upper” will match

the string “uPPER”. The Wrap Around option determines whether the search is restarted at the

top of the document when the bottom of the document is reached. The drop-down menu allows

the match criterion to be set. If it is set to Contains, then the search matches any text containing

the search string. If it is set to Starts with, then only whole words beginning with the search string

will be matched. If it is set to Full word, then only whole words will be matched.

Once search options have been set, one of five search dialog buttons can be pressed. The Replace

All button replaces all occurrences of the Find string with the Replace With string. The Replace

button replaces the current selection with the Replace With string. The Replace & Find button

 CLIPS Reference Manual

CLIPS Interfaces Guide

19

replaces the current selection with the Replace With string and finds and selects the next match

for the Find string. The Previous button finds and selects the previous match for the Find string.

The Next button finds and selects the next match for the Find string.

3.3.8.2 Find Next (⌘G)

This command finds and selects the next match for the Find string.

3.3.8.3 Find Previous (⇧⌘G)

This command finds and selects the previous match for the Find string.

3.3.8.4 Use Selection for Find (⌘E)

This command sets the Find string to the current selection.

3.3.8.5 Jump to Selection (⌘J)

This command brings the current selection into view.

3.4 The Text Menu

3.4.1 Load Selection (⌘K)

This command loads the constructs in the active edit window’s current selection into CLIPS.

Standard error detection and recovery routines used to load constructs from a file are also used

when loading a selection (i.e., if a construct has an error in it, the rest of the construct will be

skipped over until another construct to be loaded is found).

3.4.2 Batch Selection (⇧⌘K)

This command treats the active edit window’s current selection as a batch file and executes it as a

series of commands. Standard error detection and recovery routines used to load construct from a

file are not used when batching a selection (i.e., if a construct has an error in it, a number of

ancillary errors may be generated by subsequent parts of the same construct following the error).

3.4.3 Load Buffer

This command loads the constructs from the entire contents of active edit window into CLIPS. It

is equivalent to selecting the entire buffer and executing a Load Selection command.

CLIPS Reference Manual

20 Section 3: CLIPS macOS IDE

3.4.4 Balance (⌘B)

This command operates on the active edit window’s current selection by expanding it until the

selection begins and ends with parentheses and each parenthesis contained in the selection is

properly nested (i.e. each left opening parenthesis has a properly nested right closing parenthesis

and vice versa). Repeatedly using this command will select larger and larger selections of text until

a balanced selection cannot be found. The balance command is a purely textual operation and does

not ignore parentheses contained within CLIPS string values.

3.4.5 Comment

This command operates on the current selection in the active edit window by adding a semicolon

to the beginning of each line contained in the selection.

3.4.6 Uncomment

This command operates on the current selection in the active edit window by removing a semicolon

(if one exists) from the beginning of each line contained in the selection.

3.5 The Environment Menu

3.5.1 Clear

This command is equivalent to the CLIPS command (clear). When this command is chosen, the

CLIPS command (clear) will be echoed to the dialog window and executed. This command is not

available when CLIPS is executing.

3.5.2 Load Constructs... (⌘L)

This command displays the standard file selection dialog sheet, allowing the user to select a text

file to be loaded into the knowledge base. This command is equivalent to the CLIPS command

(load <file-name>). When this command is chosen and a file is selected, the appropriate CLIPS

load command will be echoed to the environment window and executed.

3.5.3 Load Batch... (⇧⌘L)

This command displays the standard file selection dialog sheet, allowing the user to select a text

file to be executed as a batch file. This command is equivalent to the CLIPS command (batch <file-

name>). When this command is chosen and a file is selected, the appropriate CLIPS batch

command will be echoed to the environment window and executed.

 CLIPS Reference Manual

CLIPS Interfaces Guide

21

3.5.4 Set Directory…

This command displays the standard folder selection dialog sheet, allowing the user to select the

current directory associated with the environment. CLIPS file commands such as load, batch, and

open use the current directory to determine the location where file operations should occur. The

current directory for an environment window is displayed in the status pane below the window

title.

3.5.5 Reset (⌘R)

This command is equivalent to the CLIPS command (reset). When this command is chosen, the

CLIPS command (reset) will be echoed to the dialog window and executed.

3.5.6 Run (⇧⌘R)

This command is equivalent to the CLIPS command (run). When this command is chosen, the

CLIPS command (run) will be echoed to the dialog window and executed.

3.5.7 Halt Rules (⌘.)

This command halts execution when the currently executing rule has finished executing all of its

actions. This command has no effect if rules are not executing.

3.5.8 Halt Execution (⇧⌘.)

This command halts execution at the first available opportunity. If rules are executing, the

currently executing rule may not complete all of its actions.

3.5.9 Clear Scrollback

This command clears all of the text in the dialog window. From the CLIPS command prompt, the

command clear-window (which takes no arguments) will also clear all of the text in the

environment window.

3.6 The Debug Menu

3.6.1 Watch Submenu

Watch items can be enabled or disabled by the appropriate menu item. Enabled watch items have

a check to the left of the menu item. Disabled watch items have no check mark in their check box.

CLIPS Reference Manual

22 Section 3: CLIPS macOS IDE

Choosing the All menu item checks all of the watch items. Choosing the None menu item unchecks

all of the watch items.

3.6.2 Agenda Browser

The Agenda Browser allows the activations on the agenda to be examined. The list on the left

side of the window shows the modules currently on the focus stack. The list of the right side of the

window shows the activations on the agenda of the selected module from the focus stack.

The Reset button sends a “(reset)” command to the dialog window. The Run button sends a “(run)”

command to the dialog window. The Step button sends a “(run 1)” command to the dialog window.

Pressing the Halt Rules button when rules are executing will halt execution when the currently

executing rule has finished all of its actions.

3.6.3 Fact Browser

The Fact Browser allows the facts in the fact list to be examined. The list on the left side of the

window shows the modules currently defined. The list in the middle of the window shows the facts

that are visible to the selected module from the module list. The list on the right side of the window

shows the slot values of the selected fact from the fact list.

 CLIPS Reference Manual

CLIPS Interfaces Guide

23

The list of facts can be sorted based on either the fact index or the associated deftemplate name by

clicking on either the Index or the Template column header. The list of slots can be sorted based

on either the slot name or the slot value by clicking on either the Slot or the Value column header.

If the Display Defaulted Values checkbox is enabled, then all of the slots of the selected fact will

be displayed. If the checkbox is disabled, then only those slots that have a value different from

their default slot value will be displayed.

The search text field can be used to filter the facts that are displayed in the fact list. When search

text is entered and the return key is pressed each fact and its slots are examined to determine if the

search text is found within one of the following templates:

f-<index>
<deftemplate-name> <slot-name> <slot-value>

For example, if the fact associated with the deftemplate thing had a fact index of 4 and slots name

with value big-pillow, location with value t2-2, and on-top-of with value red-couch, then the fact

would be displayed in the fact list only if the search text was found in one of the following strings:

f-4
thing name big-pillow
thing location t2-2
thing on-top-of red-couch

CLIPS Reference Manual

24 Section 3: CLIPS macOS IDE

3.6.4 Instance Browser

The Instance Browser allows the instances in the instance list to be examined. The list on the left

side of the window shows the modules currently defined. The list in the middle of the window

shows the instances that are visible to the selected module from the module list. The list on the

right side of the window shows the slot values of the selected instance from the instance list.

The list of instances can be sorted based on either the instance name or the associated defclass

name by clicking on either the Name or the Class column header. The list of slots can be sorted

based on either the slot name or the slot value by clicking on either the Slot or the Value column

header. If the Display Defaulted Values checkbox is enabled, then all of the slots of the selected

instance will be displayed. If the checkbox is disabled, then only those slots that have a value

different from their default slot value will be displayed.

The search text field can be used to filter the instances that are displayed in the instance list. When

search text is entered and the return key is pressed each instance and its slots are examined to

determine if the search text is found within one of the following templates:

[<name>]
<defclass-name> <slot-name> <slot-value>

For example, if the instance associated with the defclass THING had the instance name [thing1]

and slots name with value big-pillow, location with value t2-2, and on-top-of with value red-couch,

then the instance would be displayed in the instance list only if the search text was found in one of

the following strings:

 CLIPS Reference Manual

CLIPS Interfaces Guide

25

[thing1]
THING name big-pillow
THING location t2-2
THING on-top-of red-couch

3.6.5 Construct Inspector

The Construct Inspector floats above the other CLIPS IDE windows and changes to show the

text of the associated construct when one of the items from the browsers is selected.

3.7 The Window Menu

The bottom portion of the Window menu (everything below the other window management menu

items) is a list of all windows associated with the CLIPS IDE. A check mark is placed by the

window name to indicate that it is the frontmost window. A filled circle appears next to an edit

window title that has changes that need to be saved (unless it is the frontmost window).

3.8 The Help Menu

3.8.1 CLIPS Home Page

Opens the CLIPS Home web page on SourceForge.

3.8.2 Online Documentation

Opens a web page with links to CLIPS Documentation including the CLIPS User’s Guide, CLIPS

Reference Manuals, and other Documentation.

3.8.3 Online Examples

Opens a web page with links to example programs.

CLIPS Reference Manual

26 Section 3: CLIPS macOS IDE

3.8.4 CLIPS Expert System Group

Opens the CLIPS Expert System Group web page on Google Groups.

3.8.5 SourceForge Forums

Opens the CLIPS Discussion Forums web page on SourceForge.

3.8.6 Stack Overflow Q&A

Opens the Stack Overflow web page for the CLIPS question tag.

3.9 Creating the macOS Executables

In order to create the macOSX executables, you must install the source code using the

clips_macos_project_641.dmg disk image. This file can be downloaded from the SourceForge web

site (see appendix A). Once downloaded, double click the file and then drag the CLIPS Xcode

Project folder into the folder you’ll be using for development. In addition to the source code

specific to the macOS IDE, the core CLIPS source code is also included with the project, so there

is no need to download this code separately.

3.9.1 Building the CLIPS IDE Using Xcode 14.3

Open the CLIPS Xcode project directory. Double click the CLIPS.xcodeproj file. After the file

opens in the Xcode application, select the Product menu, then the Scheme submenu, and then

select the Edit Scheme… menu item. On the Info tab, set the Build Configuration drop down

menu to Release and the Executable drop down menu to CLIPS IDE.app. Select the Build menu

item from the Product menu to create the CLIPS IDE executable. The generated executable can

be found in the :build:Release folder.

 CLIPS Reference Manual

CLIPS Interfaces Guide

27

Section 4:
CLIPS Swing IDE

This section provides a brief summary of the CLIPS 6.4 Swing Integrated Development

Environment (IDE). The IDE provides a dialog window that allows commands to be entered in a

manner similar to the standard CLIPS command line interface. Any CLIPS I/O to standard input

or standard output is directed to this dialog window. In addition, the IDE also provides browser

windows for examining the current state of the CLIPS environment.

On Windows and macOS, enter the following command from the CLIPSJNI directory (see section

7.1) to launch the Swing IDE:

java -jar CLIPSIDE.jar

On Linux, you must first create the CLIPSJNI native library (see section 7.6.3). Once created,

enter the following command from the CLIPSJNI directory:

java -Djava.library.path=. –jar CLIPSIDE.jar

When launched, the IDE displays a dialog window:

A status bar is displayed beneath the title bar. On the left side of the status bar is the current

working directory. A Pause button is on the right side of the status bar. The CLIPS IDE is multi-

CLIPS Reference Manual

 Section 4: CLIPS Swing IDE

28

threaded and uses a separate thread to execute commands. Pressing the Pause button while a

command is executing will suspend execution of the command thread. This is useful if you need

to examine the output of the executing program. Pressing the Pause button a second time will

resume execution of the command thread.

Inline editing is supported in the dialog window. The left and right arrow keys can be used to move

the caret backwards and forwards through the current command. Pressing the delete key will delete

the character to the left of the caret. Insertion of other characters or pasted text occurs at the caret.

The esc key moves the caret to the end of the current command. The caret must be at the end of

the current command in order for pressing the return key to execute the command.

A command history is also supported for the dialog window. The up and down arrows allow you

to cycle through the command history. The up arrow restores the previous command and the down

arrow restores the next command. Holding the shift key down when the up or down arrow is

pressed takes you respectively to the beginning or end of the command history.

From the CLIPS command prompt, the command clear-window (which takes no arguments) will

also clear all of the text in the dialog window.

Holding down the control key while pressing the period key will halt rule execution. The RHS

actions of the currently executing rule will be allowed to complete before rule execution is halted.

Holding down the shift key, the control key, and the period key will halt execution at the first

possible opportunity. If rules are executing, this will typically occur after the current RHS action.

Remaining RHS actions will not be executed. This key combination can also be used to halt the

execution of commands and functions that loop.

4.2 The File Menu

4.2.1 New (^-N)

This command opens a new buffer for editing with the window name Untitled.

4.2.2 Open... (^-O)

This command displays the standard file selection dialog sheet, allowing the user to select a text

file to be opened as a buffer for editing. More than one file can be opened at the same time,

however, the same file cannot be opened more than once. As files are opened, they are

automatically stacked.

 CLIPS Reference Manual

CLIPS Interfaces Guide

29

4.2.3 Save (^-S)

This command saves the file in the active edit window. If the file is untitled, a save file dialog

sheet will prompt for a file name under which to save the file.

4.2.4 Save As... (^+⇧-S)

This command allows the active edit window to be saved under a new name. A save file dialog

sheet will appear to prompt for the new file name. The name of the editing window will be changed

to the new file name.

4.2.5 Page Setup...

This command allows the user to specify information about the size of paper used by the printer.

4.2.6 Print...

This command allows the user to print the active edit window.

4.2.7 Quit CLIPS IDE (^-Q)

This command causes the CLIPS IDE to quit. The user will be prompted to save any files with

unsaved changes.

4.3 The Edit Menu

4.3.1 Undo (^-Z)

This command allows you to undo your last editing operation. Typing, cut, copy, and paste

operations can all be undone.

4.3.2 Redo (^+⇧-Z)

This command allows you to redo your last editing operation. Typing, cut, copy, and paste

operations can all be redone.

CLIPS Reference Manual

 Section 4: CLIPS Swing IDE

30

4.3.3 Cut (^-X)

This command removes selected text in the active edit window or the dialog window and places it

in the Clipboard. In the dialog window, only selected text from the current command being entered

can be cut.

4.3.4 Copy (^-C)

This command copies selected text in the active edit window or the dialog window and places it

in the Clipboard.

4.3.5 Paste (^-V)

This command copies the contents of the Clipboard to the selection point in the active edit window

or the dialog window. If the selected text is in the active edit window, it is replaced by the contents

of the Clipboard. In the dialog window, text can only be pasted/replaced in the current command

being entered.

4.3.6 Set Font...

This command displays a dialog allowing the fonts to be changed for the dialog, browser, and

editor windows.

4.4 The Text Menu

4.4.1 Load Selection (^-K)

This command loads the constructs in the active edit window’s current selection into CLIPS.

Standard error detection and recovery routines used to load constructs from a file are also used

when loading a selection (i.e., if a construct has an error in it, the rest of the construct will be

skipped over until another construct to be loaded is found).

4.4.2 Batch Selection (^+⇧-K)

This command treats the active edit window’s current selection as a batch file and executes it as a

series of commands. Standard error detection and recovery routines used to load construct from a

file are not used when batching a selection (i.e., if a construct has an error in it, a number of

ancillary errors may be generated by subsequent parts of the same construct following the error).

 CLIPS Reference Manual

CLIPS Interfaces Guide

31

4.4.3 Load Buffer

This command loads the constructs from the entire contents of active edit window into CLIPS. It

is equivalent to selecting the entire buffer and executing a Load Selection command.

4.4.4 Balance (^-B)

This command operates on the active edit window’s current selection by expanding it until the

selection begins and ends with parentheses and each parenthesis contained in the selection is

properly nested (i.e. each left opening parenthesis has a properly nested right closing parenthesis

and vice versa). Repeatedly using this command will select larger and larger selections of text until

a balanced selection cannot be found. The balance command is a purely textual operation and does

not ignore parentheses contained within CLIPS string values.

4.4.5 Comment

This command operates on the current selection in the active edit window by adding a semicolon

to the beginning of each line contained in the selection.

4.4.6 Uncomment

This command operates on the current selection in the active edit window by removing a semicolon

(if one exists) from the beginning of each line contained in the selection.

4.5 The Environment Menu

4.5.1 Clear

This command is equivalent to the CLIPS command (clear). When this command is chosen, the

CLIPS command (clear) will be echoed to the dialog window and executed. This command is not

available when CLIPS is executing.

4.5.2 Load Constructs... (^-L)

This command displays a file selection dialog, allowing the user to select a text file containing

constructs to be loaded into CLIPS. This command is equivalent to the CLIPS command (load

<file-name>). When this command is chosen and a file is selected, the appropriate CLIPS load

command will be echoed to the dialog window and executed.

CLIPS Reference Manual

 Section 4: CLIPS Swing IDE

32

4.5.3 Load Batch... (^+⇧-L)

This command displays a file selection dialog, allowing the user to select a text file to be executed

as a batch file. This command is equivalent to the CLIPS command (batch <file-name>). When

this command is chosen and a file is selected, the appropriate CLIPS batch command will be

echoed to the dialog window and executed.

4.5.4 Set Directory…

This command displays a folder selection dialog, allowing the user to select the current directory

associated with the CLIPS environment. File commands such as load, batch, and open use the

current directory to determine the location where file operations should occur. The current

directory for the dialog window is displayed in the status pane below the window title.

4.5.5 Reset (^-R)

This command is equivalent to the CLIPS command (reset). When this command is chosen, the

CLIPS command (reset) will be echoed to the dialog window and executed.

4.5.6 Run (^+⇧-R)

This command is equivalent to the CLIPS command (run). When this command is chosen, the

CLIPS command (run) will be echoed to the dialog window and executed.

4.5.7 Halt Rules (^-.)

This command halts execution when the currently executing rule has finished executing all of its

actions. This command has no effect if rules are not executing.

4.5.8 Halt Execution (^+⇧-.)

This command halts execution at the first available opportunity. If rules are executing, the

currently executing rule may not complete all of its actions.

4.5.9 Clear Scrollback

This command clears all of the text in the dialog window. From the CLIPS command prompt, the

command clear-window (which takes no arguments) will also clear all of the text in the dialog

window.

 CLIPS Reference Manual

CLIPS Interfaces Guide

33

4.6 The Debug Menu

4.6.1 Watch Submenu

Watch items can be enabled or disabled by the appropriate menu item. Enabled watch items have

a check to the left of the menu item. Disabled watch items have no check mark in their check box.

Choosing the All menu item checks all of the watch items. Choosing the None menu item unchecks

all of the watch items.

4.6.2 Agenda Browser

The Agenda Browser allows the activations on the agenda to be examined. The list on the left

side of the window shows the modules currently on the focus stack. The list of the right side of the

window shows the activations on the agenda of the selected module from the focus stack.

The Reset button sends a “(reset)” command to the dialog window. The Run button sends a “(run)”

command to the dialog window. The Step button sends a “(run 1)” command to the dialog window.

Pressing the Halt Rules button when rules are executing will halt execution when the currently

executing rule has finished all of its actions.

4.6.3 Fact Browser

The Fact Browser allows the facts in the fact list to be examined. The list on the left side of the

window shows the modules currently defined. The list in the middle of the window shows the facts

that are visible to the selected module from the module list. The list on the right side of the window

shows the slot values of the selected fact from the fact list.

CLIPS Reference Manual

 Section 4: CLIPS Swing IDE

34

The list of facts can be sorted based on either the fact index or the associated deftemplate name by

clicking on either the Index or the Template column header. The list of slots can be sorted based

on either the slot name or the slot value by clicking on either the Slot or the Value column header.

If the Display Defaulted Values checkbox is enabled, then all of the slots of the selected fact will

be displayed. If the checkbox is disabled, then only those slots that have a value different from

their default slot value will be displayed.

The search text field can be used to filter the facts that are displayed in the fact list. When search

text is entered and the return key is pressed each fact and its slots are examined to determine if the

search text is found within one of the following templates:

f-<index>
<deftemplate-name> <slot-name> <slot-value>

For example, if the fact associated with the deftemplate thing had a fact index of 4 and slots name

with value big-pillow, location with value t2-2, and on-top-of with value red-couch, then the fact

would be displayed in the fact list only if the search text was found in one of the following strings:

f-4
thing name big-pillow
thing location t2-2
thing on-top-of red-couch

4.6.4 Instance Browser

The Instance Browser allows the instances in the instance list to be examined. The list on the left

side of the window shows the modules currently defined. The list in the middle of the window

 CLIPS Reference Manual

CLIPS Interfaces Guide

35

shows the instances that are visible to the selected module from the module list. The list on the

right side of the window shows the slot values of the selected instance from the instance list.

The list of instances can be sorted based on either the instance name or the associated defclass

name by clicking on either the Name or the Class column header. The list of slots can be sorted

based on either the slot name or the slot value by clicking on either the Slot or the Value column

header. If the Display Defaulted Values checkbox is enabled, then all of the slots of the selected

instance will be displayed. If the checkbox is disabled, then only those slots that have a value

different from their default slot value will be displayed.

The search text field can be used to filter the instances that are displayed in the instance list. When

search text is entered and the return key is pressed each instance and its slots are examined to

determine if the search text is found within one of the following templates:

[<name>]
<defclass-name> <slot-name> <slot-value>

For example, if the instance associated with the defclass THING had the instance name [thing1]

and slots name with value big-pillow, location with value t2-2, and on-top-of with value red-couch,

then the instance would be displayed in the instance list only if the search text was found in one of

the following strings:

[thing1]
THING name big-pillow
THING location t2-2
THING on-top-of red-couch

CLIPS Reference Manual

 Section 4: CLIPS Swing IDE

36

4.6.5 Construct Inspector

The Construct Inspector floats above the other CLIPS IDE windows and changes to show the

text of the associated construct when one of the items from the browsers is selected.

4.7 The Window Menu

The Window menu is a list of all windows associated with the CLIPS IDE. A check mark is placed

by the window name to indicate that it is the frontmost window.

4.8 The Help Menu

4.8.1 CLIPS Home Page

Opens the CLIPS Home web page.

4.8.2 Online Documentation

Opens a web page with links to CLIPS Documentation including the CLIPS User’s Guide, CLIPS

Reference Manuals, and other Documentation.

4.8.3 Online Examples

Opens a web page with links to example programs.

4.8.4 CLIPS Expert System Group

Opens the CLIPS Expert System Group web page on Google Groups.

 CLIPS Reference Manual

CLIPS Interfaces Guide

37

4.8.5 SourceForge Forums

Opens the CLIPS Discussion Forums web page on SourceForge.

4.8.6 Stack Overflow Q&A

Opens the Stack Overflow web page for the CLIPS question tag.

4.8.7 About CLIPS IDE

This command displays version information about the CLIPS IDE application.

4.9 Creating the Swing IDE Executable

See section 7 for details on creating the Swing IDE executable.

CLIPS Reference Manual

38 Section 5: CLIPS DLL Interface

Section 5:

CLIPS DLL Interface

This section describes various techniques for integrating CLIPS and creating executables using

Microsoft Windows. The examples in this section have been tested running Windows 10 Operating

System with Visual Studio Community 2019.

5.1 Installing the Source Code

In order to run the integration examples, you must install the source code by downloading the

clips_windows_projects_641.zip file (see appendix A for information on obtaining CLIPS). Once

downloaded, you must then extract the contents of the file by right clicking on it and selecting the

Extract All… menu item. Drag the clips_windows_projects_641 directory into the directory

you’ll be using for development. In addition to the source code specific to the Windows projects,

the core CLIPS source code is also included, so there is no need to download this code separately.

5.2 Building the CLIPS Libraries

The Visual Studio CLIPS solution file includes four projects for building libraries. They are:

• WrappedLib

• DLL

• WrappedDLL

• CLIPSJNI

WrappedLib is a starter project that demonstrates how to build a CLIPS C++ library that is

statically linked with an executable. CLIPSJNI is a starter project that demonstrates how to build

a CLIPS library for use with the Java Native Interface. DLL is a starter project that demonstrates

how to build a CLIPS Dynamic Link Library (DLL) that is dynamically linked with an executable.

WrappedDLL is a C++ “wrapper” library that simplifies the use of the CLIPS DLL.

Unless you want to make changes to the libraries, there is no need to build them. Windows

executables are available through a separate installer and the precompiled libraries are available in

the Libraries directory of the corresponding project directory.

 CLIPS Reference Manual

CLIPS Interfaces Guide

39

5.2.1 Building the Projects Using Microsoft Visual Studio Community 2022

Navigate to the Projects\MVS_2022 directory. Open the file CLIPS.sln by double clicking on it

or right click on it and select the Open menu item. After the file opens in Visual Studio, select

Configuration Manager… from the Build menu. Select the Configuration (Debug or Release) for

the library project and then click the Close button. Right click on the library project name in the

Solution Explorer pane and select the Build menu item. When compilation is complete, the

example executable will be in the corresponding <Platform>\<Configuration> directory of the

Library directory of the corresponding DLL, WrappedLib, or WrappedDLL directory.

The CLIPSJNI project assumes that Java SE Development Kit 11.0.17 is installed on your

computer and that the Java header files are contained in the directories C:\Program Files\Java\ jdk-

11.0.17\include and C:\Program Files\Java\ jdk-11.0.17\include\win32. To change the directory

setting for the location of the headers files, right click on the CLIPSJNI project and select the

Properties menu item. In the tree view control, open the Configuration Properties and C/C++

branches, then select the General leaf item. Edit the value in the Additional Include Directories

editable text box to include the appropriate directory for the Java include files.

5.3 Running the Library Examples

The Visual Studio CLIPS solution file includes three projects that demonstrate the use of the static

and dynamic libraries from Section 5.2. They are:

• DLLExample

• WrappedLibExample

• WrappedDLLExample

The DLLExample project demonstrates how to statically load the CLIPS DLL. The example code

links with the DLL import library (CLIPS.dll). The WrappedLibExample project demonstrates

how to statically load the CLIPS Wrapped C++ library (WrappedLib.lib). The C++ class

CLIPSCPPEnv is used to provide a C++ wrapper to the CLIPS API. The WrappedDLLExample

project demonstrates the use of a C++ wrapper to simplify the use of the DLL. The example code

used in this project is identical to the code used with the WrappedLibExample project.

5.3.1 Building the Examples Using Microsoft Visual Studio Community 2022

Navigate to the MVS_2022 directory. Open the file CLIPS.sln by double clicking on it (or right

click on it and select the Open menu item). After the file opens in Visual Studio, select

Configuration Manager… from the Build menu. Select the Configuration (Debug or Release)

for the example project, the appropriate platform (either x64 for a 64-bit system or Win32 for a

32-bit system), and then click the Close button. Note that the configuration chosen should match

the configuration of the libraries/DLL projects (DLL, WrappedLib, and WrappedDLL). Right

CLIPS Reference Manual

40 Section 5: CLIPS DLL Interface

click on the example project name in the Solution Explorer pane and select the Build menu item.

When compilation is complete, the example executable will be in the corresponding

<Platform>\<Configuration> directory of the Executables directory of the corresponding

DLLExample, WrappedLibExample, or WrappedDLLExample directory.

 CLIPS Reference Manual

CLIPS Interfaces Guide

41

Section 6:

CLIPS .NET Interface

This section describes various techniques for integrating CLIPS and creating executables when

using Microsoft .NET. The examples in this section have been tested running on Windows 11 with

Visual Studio Community 2022.

6.1 Installing the Source Code

In order to create the Windows .NET DLL and executables, you must install the source code by

downloading the clips_windows_projects_641.zip file (see appendix A for information on

obtaining CLIPS). Once downloaded, you must then extract the contents of the file by right

clicking on it and selecting the Extract All… menu item. Drag the clips_windows_projects_641

directory into the directory you’ll be using for development. In addition to the source code specific

to the Windows projects, the core CLIPS source code is also included, so there is no need to

download this code separately.

6.2 Building the .NET Library and Example Executables

The Visual Studio CLIPS solution file includes nine .NET projects:

• AnimalFormsExample

• AnimalWPFExample

• AutoFormsExample

• AutoWPFExample

• CLIPSCLRWrapper

• RouterFormsExample

• RouterWPFExample

• WineFormsExample

• WineWPFExample

The CLIPSCLRWrapper project creates a .NET DLL using a Common Language Runtime

wrapper around the native CLIPS code. There are four examples utilizing the DLL with each

example implemented using a Windows Forms project and a Windows Presentation Foundation

project (for a total of eight projects).

CLIPS Reference Manual

42 Section 6: CLIPS .NET Interface

6.2.1 Building the Projects Using Microsoft Visual Studio Community 2022

Navigate to the MVS_2022 directory and open the file CLIPS.sln by double clicking on it (or right

click on it and select the Open menu item). After the file opens in Visual Studio, select

Configuration Manager… from the Build menu. Select the Configuration (Debug or Release)

and the Platform (x86 or x64) for each project and then click the Close button. To compile projects

individually, right click on the project name in the Solution Explorer pane and select the Build

menu item. When compilation is complete, each example application will be in the

<Platform>\<Configuration> subdirectory of the corresponding project bin directory and the

.NET DLL files will be in the similar subdirectory of the Libraries directory of the

CLIPSCLRWrapper project.

6.3 Running the .NET Demo Programs

The CLIPS .NET demonstration programs can be run on Windows by double clicking their

executable. The CLIPSCLRWrapper.dll file must be in the same directory as the executable.

6.3.1 Wine Demo

When launched, the Wine Demo window should appear (WPF version pictured):

 CLIPS Reference Manual

CLIPS Interfaces Guide

43

6.3.2 Auto Demo

When launched, the Auto Demo window should appear (Forms version pictured):

6.3.3 Animal Demo

When launched, the Animal Demo window should appear (WPF version pictured):

CLIPS Reference Manual

44 Section 6: CLIPS .NET Interface

6.3.4 Router Demo

When launched, the Router Demo window should appear (Forms version pictured):

6.4 CLIPS .NET Classes

This section describes the classes and methods available in the CLIPSCLRWrapper.dll file for

developing CLIPS .NET applications. These classes and methods reside in the CLIPSNET

namespace.

6.4.1 The Environment Class

public class Environment

.NET programs interacting with CLIPS must create at least one instance of the Environment class.

6.4.1.1 Constructors

public Environment();

6.4.1.2 Clearing, Loading, and Creating Constructs

public void Clear();

public void Load(String fileName);

public void LoadFromString(String loadString);

 CLIPS Reference Manual

CLIPS Interfaces Guide

45

public void LoadFromResource(String assemblyName, String resourceFile);

public void Build(String buildString);

The Clear method removes all constructs from an Environment instance. The Load,

LoadFromString, and LoadFromResource methods load constructs into an Environment

instance. The fileName parameter of the Load method specifies a file path to a text file containing

constructs. The loadString parameter of the LoadFromString method is a string containing

constructs. The resourceFile parameter of the LoadFromResource string specifies the resource

path to a text file containing constructs and the assemblyName parameter specifies the assembly

in which it’s contained. The Build method loads a single construct into an Environment instance;

it returns true if the construct was successfully loaded, otherwise it returns false.

A CLIPSException is thrown by the Clear and Build methods if an error occurs. A

CLIPSLoadException is thrown by the Load, LoadFromString, and LoadFromResource

methods if an error occurs.

6.4.1.3 Executing Rules

public void Reset();

public long long Run(long long runLimit);

public long long Run();

The Reset method removes all fact and instances from an Environment instance and creates the

facts and instances specified in deffacts and definstances constructs. The Run method executes

the number of rules specified by the runLimit parameter or all rules if the runLimit parameter is

unspecified. The Run method returns the number of rules executed (which may be less than the

runLimit parameter value). A CLIPSException is thrown by the Reset and Run methods if an

error occurs.

6.4.1.4 Creating Facts and Instances

public FactAddressValue AssertString(String factString);

public InstanceAddressValue MakeInstance(String instanceString);

The AssertString method asserts a fact using the deftemplate and slot values specified by the

factString parameter. The MakeInstance method creates an instance using the instance name,

defclass, and slot values specified by the instanceString parameter. A CLIPSException is

thrown by the AssertString and MakeInstance methods if an error occurs.

CLIPS Reference Manual

46 Section 6: CLIPS .NET Interface

6.5.1.5 Searching for Facts and Instances

public FactAddressValue FindFact(

 String deftemplate);

public FactAddressValue FindFact(

 String variable,

 String deftemplateName,

 String condition);

public List<FactAddressValue> FindAllFacts(

 String deftemplateName);

public List<FactAddressValue> FindAllFacts(

 String variable,

 String deftemplateName,

 String condition);

public InstanceAddressValue FindInstance(

 String defclassName);

public InstanceAddressValue FindInstance(

 String variable,

 String defclassName,

 String condition);

public List<InstanceAddressValue> FindAllInstances(

 String defclassName);

public List<InstanceAddressValue> FindAllInstances(

 String variable,

 String defclassName,

 String condition);

The FindFact methods return the first fact associated with the deftemplate construct specified by

the deftemplateName parameter. The optional variable and condition parameters can be jointly

specified to restrict the fact returned by specifying a CLIPS expression that must evaluate to a

value other FALSE in order for the fact to be returned. Each fact of the specified deftemplate will

be tested until a fact satisfying the condition is found. The fact being tested is assigned to the

CLIPS variable specified by the variable parameter and may be referenced in the condition

parameter. If no facts of the specified deftemplate exist, or no facts satisfy the condition, the value

nullptr is returned. A CLIPSException is thrown if an error occurs.

The FindAllFacts methods returns the list of facts associated with the deftemplate construct

specified by the deftemplateName parameter. The optional variable and condition parameters

 CLIPS Reference Manual

CLIPS Interfaces Guide

47

can be jointly specified to restrict the facts returned by specifying a CLIPS expression that must

evaluate to a value other FALSE in order for a fact to be returned. Each fact of the specified

deftemplate will be tested to determine whether it will be added to the list. The fact being tested is

assigned to the CLIPS variable specified by the variable parameter and may be referenced in the

condition parameter. If no facts of the specified deftemplate exist, or no facts satisfy the condition,

a list with no members is returned. A CLIPSException is thrown if an error occurs.

The FindInstance methods return the first instance associated with the defclass construct specified

by the defclassName parameter. The optional variable and condition parameters can be jointly

specified to restrict the instance returned by specifying a CLIPS expression that must evaluate to

a value other FALSE in order for the instance to be returned. Each instance of the specified defclass

will be tested until an instance satisfying the condition is found. The instance being tested is

assigned to the CLIPS variable specified by the variable parameter and may be referenced in the

condition parameter. If no instances of the specified defclass exist, or no instances satisfy the

condition, the value nullptr is returned. A CLIPSException is thrown if an error occurs.

The FindAllInstances methods returns the list of instances associated with the defclass construct

specified by the defclassName parameter. The optional variable and condition parameters can

be jointly specified to restrict the instances returned by specifying a CLIPS expression that must

evaluate to a value other FALSE in order for an instance to be returned. Each instance of the

specified defclass will be tested to determine whether it will be added to the list. The instance

being tested is assigned to the CLIPS variable specified by the variable parameter and may be

referenced in the condition parameter. If no instances of the specified defclass exist, or no

instances satisfy the condition, a list with no members is returned. A CLIPSException is thrown

if an error occurs.

6.5.1.5 Executing Functions and Commands

public PrimitiveValue Eval(String evalString);

The Eval method evaluates the command or function call specified by the evalString parameter

and returns the result of the evaluation. A CLIPSException is thrown if an error occurs.

6.5.1.6 Debugging

public void Watch(String watchItem);

public void Unwatch(String watchItem);

public bool GetWatchItem(String watchItem);

public void SetWatchItem(String watchItem,bool newValue);

The watchItem parameter should be one of the following static String values defined in the

Environment class: FACTS, RULES, DEFFUNCTIONS, COMPILATIONS, INSTANCES,

CLIPS Reference Manual

48 Section 6: CLIPS .NET Interface

SLOTS, ACTIVATIONS, STATISTICS, FOCUS, GENERIC_FUNCTIONS, METHODS,

GLOBALS, MESSAGES, MESSAGE_HANDLERS, NONE, or ALL.

The Watch method enables the specified watch item and the Unwatch method disables the

specified watch item. The GetWatchItem method returns the current state of the specified watch

item. The SetWatchItem method enables the specified watch item if the newValue parameter is

true and disables it if the newValue parameter is false.

6.5.1.7 Adding and Removing User Functions

public void AddUserFunction(

 String functionName,

 UserFunction callback);

public void AddUserFunction(

 String functionName,

 String returnTypes,

 unsigned short minArgs,

 unsigned short maxArgs,

 String argTypes,

 UserFunction callback);

public void RemoveUserFunction(

 String functionName);

The AddUserFunction method associates a CLIPS function name (specified by the

functionName parameter) with an instance of a .NET class inheriting from the UserFunction

class (specified by the callback parameter). This allows you to call .NET code from within CLIPS

code. The optional parameters returnTypes, minArg, maxArgs, and argTypes can be used to

specify the CLIPS primitive types returned by the function, the minimum and maximum number

of arguments the function is expecting, and the primitive types allowed for each argument. The

UNBOUNDED constant from the UserFunction class can be used for the maxArgs parameter to

indicate that there is no upper limit on the number of arguments.

If the returnTypes parameter value is nullptr, then CLIPS assumes that the UDF can return any

valid type. Specifying one or more type character codes, however, allows CLIPS to detect errors

when the return value of a UDF is used as a parameter value to a function that specifies the types

allowed for that parameter. The following codes are supported for return values and argument

types:

 CLIPS Reference Manual

CLIPS Interfaces Guide

49

Type Code Type

b Boolean

d Double Precision Float

e External Address

f Fact Address

i Instance Address

l Long Long Integer

m Multifield

n Instance Name

s String

y Symbol

v Void—No Return Value

* Any Type

If the argTypes parameter value is null, then there are no argument type restrictions. One or more

character argument types can also be specified, separated by semicolons. The first type specified

is the default type (used when no other type is specified for an argument), followed by types for

specific arguments. For example, "ld" indicates that the default argument type is an integer or float;

"ld;s" indicates that the default argument type is an integer or float, and the first argument must be

a string; "*;;m" indicates that the default argument type is any type, and the second argument must

be a multifield; ";sy;ld" indicates that the default argument type is any type, the first argument

must be a string or symbol; and the second argument type must be an integer or float.

The AddUserFunction method throws an ArgumentException if the association fails because

one already exists for the functionName parameter.

The RemoveUserFunction method removes the association between a CLIPS function name and

the user function code associated the function name. You can use this to remove a previously

created associated (either to remove it altogether or to replace the old associated with a new one).

The RemoveUserFunction method throws an ArgumentException if no association currently

exists for the functionName parameter.

6.5.1.8 Managing Routers

public void AddRouter(

 Router theRouter);

public void DeleteRouter(

 Router theRouter);

public void ActivateRouter(

 Router theRouter);

CLIPS Reference Manual

50 Section 6: CLIPS .NET Interface

public void DeactivateRouter(

 Router theRouter);

public void Write(

 String logicalName,

 String printString);

public void Write(

 String printString);

public void WriteLine(

 String logicalName,

 String printString);

public void WriteLine(

 String printString);

The AddRouter method adds an instance of a .NET class inheriting from the Router class to the

list of routers checked by CLIPS for processing I/O requests. The DeleteRouter method removes

a Router instance from the list of CLIPS routers. The methods DeactivateRouter and

ActivateRouter allow a router to be disabled/enabled without removing it from the list of routers.

The Write and WriteLine methods output the string specified by the printString parameter

through the router system. These methods direct the output to the logical name specified by the

logicalName parameter. If the logicalName parameter is unspecified, output is directed to

standard output. In addition, the WriteLine method appends a carriage return to the output.

6.5.1.9 Command Loop

public void CommandLoop();

The CommandLoop method starts the CLIPS Read-Eval-Print Loop (REPL) using the .NET

standard input and output streams.

6.5.2 The PrimitiveValue Class and Subclasses

public class PrimitiveValue abstract

public class VoidValue : PrimitiveValue

public class NumberValue abstract : PrimitiveValue

public class FloatValue : NumberValue

public class IntegerValue : NumberValue

 CLIPS Reference Manual

CLIPS Interfaces Guide

51

public class LexemeValue abstract : PrimitiveValue

public class SymbolValue : LexemeValue

public class StringValue : LexemeValue

public class InstanceNameValue : LexemeValue

public class MultifieldValue : PrimitiveValue , IEnumerable

public class FactAddressValue : PrimitiveValue

public class InstanceAddressValue : PrimitiveValue

public class ExternalAddressValue : PrimitiveValue

The PrimitiveValue class and its subclasses constitute the .NET representation of the CLIPS

primitive data types. Several methods (such as Eval and GetSlotValue) return objects belonging

to concrete subclasses of the PrimitiveValue class.

Several methods are provided for determining the type of a PrimitiveValue object:

public CLIPSNetType CLIPSType();

public bool IsVoid();

public bool IsLexeme();

public bool IsSymbol();

public bool IsString();

public bool IsInstanceName();

public bool IsNumber();

public bool IsFloat();

public bool IsInteger();

public bool IsFactAddress();

public bool IsInstance();

public bool IsInstanceAddress();

public bool IsMultifield();

CLIPS Reference Manual

52 Section 6: CLIPS .NET Interface

public bool IsExternalAddress();

The CLIPSType method returns one of the following CLIPSNETType enumerations: FLOAT,

INTEGER, SYMBOL, STRING, MULTIFIELD, EXTERNAL_ADDRESS, FACT_ADDRESS,

INSTANCE_ADDRESS, INSTANCE_NAME, or VOID.

Several methods are provided for creating objects belonging to the FloatValue, IntegerValue,

SymbolValue, StringValue, InstanceNameValue, MultifieldValue, and VoidValue classes:

public FloatValue();

public FloatValue(long long value);

public FloatValue(double value);

public IntegerValue();

public IntegerValue(long long value);

public IntegerValue(double value);

public SymbolValue()

public SymbolValue(String value);

public StringValue();

public StringValue(String value);

public InstanceNameValue();

public InstanceNameValue(String value);

public MultifieldValue();

public MultifieldValue(List<PrimitiveValue> value);

public VoidValue();

The AssertString and MakeInstance methods of the Environment class can be used to create

objects of the FactAddressValue and InstanceAddressValue classes respectively.

The following NumberValue operators are available for retrieving the underlying .NET value

from NumberValue objects:

public static operator long long (NumberValue ^ val);

 CLIPS Reference Manual

CLIPS Interfaces Guide

53

public static operator double (NumberValue ^ val);

The Value property is available for retrieving the underlying .NET value from IntegerValue

objects:

property long long Value { get; }

The Value property is available for retrieving the underlying .NET value from FloatValue objects:

property double Value { get; }

The Value property is provided to retrieve the underlying Java value from SymbolValue,

StringValue, and InstanceNameValue objects:

public property String ^ Value { get; }

The InstanceNameValue class also provides a method for converting an instance name to the

corresponding instance address in a specified environment:

public InstanceAddressValue GetInstance (Environment theEnv);

The following MultifieldValue properties provide access to the list of PrimitiveValue objects

contained in a MultifieldValue method:

property PrimitiveValue ^ default[int] { get; }

property List<PrimitiveValue ^> ^ Value { get; }

public property int Count { get; }

The following FactAddressValue methods and properties provide access to the slot values and

fact index of the associated CLIPS fact:

public property PrimitiveValue default[String] { get; }

public PrimitiveValue GetSlotValue(String slotName) { get; }

public property long long FactIndex { get; }

The following InstanceAddressValue methods and properties provide access to the slot values

and instance name of the associated CLIPS instance:

public property PrimitiveValue default[String] { get; }

public PrimitiveValue GetSlotValue(String slotName);

CLIPS Reference Manual

54 Section 6: CLIPS .NET Interface

public property String InstanceName { get; }

Access to the underlying values of ExternalAddressValue objects is not currently supported.

6.5.3 The CLIPSException and CLIPSLoadException Classes

public class CLIPSException : Exception

public class CLIPSLoadException : CLIPSException

CLIPS.NET provides two subclasses of the Exception class for methods generating errors: CLIPS

Exception and CLIPSLoadException.

6.5.3.1 CLIPSLoadException Properties

public property CLIPSLineError ^ default[int] { get; }

public property List<CLIPSLineError> LineErrors { get; }

public property int Count { get; }

public class CLIPSLineError;

Loading constructs can generate multiple errors, so the LineErrors property of the

CLIPSLoadException class returns the list of CLIPSLineError objects detailing each error.

6.5.3.1.1 CLIPSLineError Properties

public property String FileName { get; }

public property long LineNumber { get; }

public property String Message { get; }

The FileName, LineNumber, and Message properties respectively return the file name, line

number, and error message associated with a CLIPSLineError object.

6.5.4 The Router Class

public class Router

The Router class allows .NET objects to interact with the CLIPS I/O router system.

 CLIPS Reference Manual

CLIPS Interfaces Guide

55

6.5.4.1 Required Properties and Methods

public property int Priority { get; set; }

public property String Name;

public virtual bool Query(String logicalName);

public virtual void Write(String logicalName,String writeString);

public virtual int Read(String logicalName);

public virtual int Unread(String logicalName,int theChar);

public void Exit(bool failure);

The Priority property is the integer priority of the router. Routers with higher priorities are queried

before routers of lower priority to determine if they can process an I/O request. The Name property

is the identifier associated with the router. The Query method is called to determine if the router

handles I/O requests for the logicalName parameter. It should return true if the router can process

the request, otherwise it should return false. The Write method is called to output the value

specified by the writeString parameter to the logicalName parameter. The Read method returns

an input character for the logicalName parameter. It should return -1 if no characters are available

in the input queue. The Read method places the character specified by parameter theChar back

on the input queue so that it is available for the next Read request. It returns the value of parameter

theChar if successful, otherwise it returns -1. The Exit method is invoked when the CLIPS exit

command is issued or an unrecoverable error occurs. The failure parameter will either be false for

an exit command or true for an unrecoverable error.

6.5.4.2 Predefined Router Names

public static String STDIN;

public static String STDOUT;

public static String STDWRN;

public static String STDERR;

The String constants STDIN, STDOUT, STDWRN, and STDERR are the standard predefined

logical names used by CLIPS.

6.5.4.3 The BaseRouter Class

public class BaseRouter : Router

CLIPS Reference Manual

56 Section 6: CLIPS .NET Interface

The BaseRouter class is an implementation of the Router interface. Its Write, Read, Unread,

and Exit methods are minimal implementations; the Write and Exit methods execute no

statements and the Read and Unread methods always return -1. Subclasses can override these

methods as needed to create functional routers.

6.5.4.3.1 Constructors

public BaseRouter(

 Environment env,

 String [] queryNames);

public BaseRouter(

 Environment env,

 String [] queryNames,

 int priority);

public BaseRouter(

 Environment env,

 String [] queryNames,

 int priority,

 String routerName);

The BaseRouter constructor requires the env and queryName parameters. Optionally, the

priority parameter or the priority and routerName parameters can be supplied. The env

parameter is the Environment object associated with the Router object. The queryNames

parameter is an array of strings used by the Query method of the BaseRouter object to determine

whether the router handles I/O for a specific logical name. The priority parameter is the priority

of the router; if it is unspecified, it defaults to 0. The routerName parameter is the name that

serves as an identifier for the BaseRouter object; if it is unspecified an identifier will be generated

for the router.

6.5.5 The UserFunction Class

public class UserFunction

The UserFunction class provides a method for invoking a .NET method from CLIPS code.

6.5.5.1 Required Methods

public PrimitiveValue Evaluate(List<PrimitiveValue> arguments);

Once a linkage has been made between a CLIPS function name and an object implementing the

UserFunction interface, the Evaluate method is invoked when the linked CLIPS function call is

 CLIPS Reference Manual

CLIPS Interfaces Guide

57

executed. The function arguments are evaluated and passed to the evaluate method via the

arguments parameter.

6.5.5.2 Constants

public static unsigned short UNBOUNDED;

The UNBOUNDED constant can be used for the maxArgs parameter of the AddUserFunction

method of the Environment class to indicate that there is no upper limit on the number of

arguments.

6.5.6 Examples

The following examples require a new Console Application project to be created in a solution

containing the CLIPSCLRWrapper project.

To create a new project, right click on the solution in the Solution Explorer and select the Add -

> New Project… menu item. In the language dropdown menu, select C#. In the platform

dropdown menu, select Windows. In the project types dropdown, select Console. In the list of

available projects, select Console Application. Click the Next button.

Enter Example as the content of the Project name text box and then click the Next button.

Select the appropriate Target Framework (or use the default framework) and then click the Create

button to add the new project to the solution.

The new project must reference the CLIPSCLRWrapper project. To add a reference, right click

on Dependencies in the Example project in the Solution Explorer and then select the Add

Project Reference… menu item. In the left pane of the dialog that appears, select Solution under

Projects. In the middle pane, check the box for the CLIPSCLRWrapper project. Finally, click

the OK button.

6.5.6.1 Loading Constructs from an Embedded Resource file

This example demonstrates how to load a CLIPS source file that has been embedded in the

application.

First, right click on the Example project, select Add -> New Item… menu item. Under Visual C#

Items -> General, select Text File, change the name to hello.clp, and then click the Add button.

Select the hello.clp file in the Solution Explorer and then change the Build Action in the Properties

window to Embedded Resource.

Add the following content:

CLIPS Reference Manual

58 Section 6: CLIPS .NET Interface

(defrule hello
 =>
 (println "Hello World"))

Next replace the contents of the Program.cs file with the following code:

using CLIPSNET;

namespace Example
 {
 class Program
 {
 static void Main(string[] args)
 {
 CLIPSNET.Environment clips = new CLIPSNET.Environment();

 clips.LoadFromResource("Example","Example.hello.clp");
 clips.Watch(CLIPSNET.Environment.RULES);
 clips.Reset();
 clips.Run();
 }
 }
 }

Finally, build and run the program:

FIRE 1 hello: *
Hello World

6.5.6.2 Fact Query

This example demonstrates how to query CLIPS to retrieve facts.

First, replace the contents of the Program.cs file with the following code:

using System;
using System.Collections.Generic;

using CLIPSNET;

namespace Example
 {
 class Program
 {
 static void Main(string[] args)
 {
 CLIPSNET.Environment clips = new CLIPSNET.Environment();

 clips.Build("(deftemplate person (slot name) (slot age))");

 clips.AssertString("(person (name \"Fred Jones\") (age 17))");

 CLIPS Reference Manual

CLIPS Interfaces Guide

59

 clips.AssertString("(person (name \"Sally Smith\") (age 23))");
 clips.AssertString("(person (name \"Wally North\") (age 35))");
 clips.AssertString("(person (name \"Jenny Wallis\") (age 11))");

 Console.WriteLine("All people:");

 List<FactAddressValue> people = clips.FindAllFacts("person");

 foreach (FactAddressValue p in people)
 { Console.WriteLine(" " + p["name"]); }

 Console.WriteLine("All adults:");

 people = clips.FindAllFacts("?f","person","(>= ?f:age 18)");

 foreach (FactAddressValue p in people)
 { Console.WriteLine(" " + p["name"]); }
 }
 }
 }

Next, build and run the program:

All people:
 "Fred Jones"
 "Sally Smith"
 "Wally North"
 "Jenny Wallis"
Adults:
 "Sally Smith"
 "Wally North"

6.5.6.3 Big Integer Multiplication User Function

This example demonstrates how to add a user function to multiply two numbers together using

big integer math. It also demonstrates using the Eval method to evaluate a CLIPS function call.

Replace the contents of the Program.cs file with the following code:

using System;
using System.Collections.Generic;
using System.Numerics;

using CLIPSNET;

namespace Example
 {
 public class BIM_UDF : UserFunction
 {
 public BIM_UDF()
 {
 }

CLIPS Reference Manual

60 Section 6: CLIPS .NET Interface

 public override PrimitiveValue Evaluate(List<PrimitiveValue> arguments)
 {
 LexemeValue lv = (LexemeValue) arguments[0];
 BigInteger rv = BigInteger.Parse(lv.Value);

 for (int i = 1; i < arguments.Count; i++)
 {
 lv = (LexemeValue) arguments[i];
 rv = BigInteger.Multiply(rv,BigInteger.Parse(lv.Value));
 }

 return new StringValue(rv.ToString());
 }
 }

 class Program
 {
 static void Main(string[] args)
 {
 CLIPSNET.Environment clips = new CLIPSNET.Environment();

 clips.AddUserFunction("bi*","s",2,UserFunction.UNBOUNDED,"s",
 new BIM_UDF());

 Console.WriteLine("(* 9 8) = " +
 clips.Eval("(* 9 8)"));
 Console.WriteLine("(bi* \"9\" \"8\") = " +
 clips.Eval("(bi* \"9\" \"8\")"));
 Console.WriteLine("(* 4294967296 4294967296) = " +
 clips.Eval("(* 4294967296 4294967296)"));
 Console.WriteLine("(bi* \"4294967296\" \"4294967296\") = " +
 clips.Eval("(bi* \"4294967296\" \"4294967296\")"));
 }
 }
 }

Finally, build and run the program:

(* 9 8) = 72
(bi* "9" "8") = "72"
(* 4294967296 4294967296) = 0
(bi* "4294967296" "4294967296") = "18446744073709551616"
$

6.5.6.4 Get Properties User Function

This example demonstrates how to add a user function that returns a multifield value containing

the list of environment variables.

First, replace the contents of the Program.cs file with the following code:

 CLIPS Reference Manual

CLIPS Interfaces Guide

61

using System.Collections;
using System.Collections.Generic;

using CLIPSNET;

namespace Example
 {
 public class GV_UDF : UserFunction
 {
 public GV_UDF()
 {
 }

 public override PrimitiveValue Evaluate(List<PrimitiveValue> arguments)
 {
 List<PrimitiveValue> values = new List<PrimitiveValue>();

 foreach (DictionaryEntry de in
 System.Environment.GetEnvironmentVariables())
 { values.Add(new SymbolValue(de.Key.ToString())); }

 return new MultifieldValue(values);
 }
 }

 class Program
 {
 static void Main(string[] args)
 {
 CLIPSNET.Environment clips = new CLIPSNET.Environment();

 clips.AddUserFunction("get-variables","m",0,0,null,new GV_UDF());
 clips.CommandLoop();
 }
 }
 }

Next, build and run the program:

 CLIPS (6.4.1 4/8/23)
CLIPS> (get-variables)
(HOMEPATH COMPUTERNAME OneDrive VisualStudioEdition PROCESSOR_REVISION
VS100COMNTOOLS DNX_HOME PkgDefApplicationConfigFile PATHEXT SystemDrive TMP TEMP
LOCALAPPDATA PUBLIC USERDOMAIN Path PROCESSOR_LEVEL PROCESSOR_IDENTIFIER PROMPT
PSModulePath NUMBER_OF_PROCESSORS FPS_BROWSER_USER_PROFILE_STRING
CommonProgramFiles ProgramData ProgramFiles FP_NO_HOST_CHECK SystemRoot
SESSIONNAME VisualStudioVersion LOGONSERVER USERPROFILE
MSBuildLoadMicrosoftTargetsReadOnly VS140COMNTOOLS VSLANG
USERDOMAIN_ROAMINGPROFILE APPDATA HOMEDRIVE USERNAME
FPS_BROWSER_APP_PROFILE_STRING PROCESSOR_ARCHITECTURE OS ComSpec VisualStudioDir
windir ALLUSERSPROFILE)
CLIPS> (exit)

CLIPS Reference Manual

 Section 7: CLIPS Java Native Interface

62

Section 7:

CLIPS Java Native Interface

This section describes the CLIPS Java Native Interface (CLIPSJNI) and the examples

demonstrating the integration of CLIPS with a Swing interface. The examples have been tested

with the following software environments:

• Windows 11 with JDK 11.0.17 and Visual Studio Community 2022

• MacOS 13.2 with JDK 18.0.1.1 and Xcode 14.3

• Linux: Ubuntu 22.04 LTS with OpenJDK 11.0.17, Debian 11.3 with OpenJDK 11.0.18,

Fedora 36 with OpenJDK 17.0.5, CentOS 9 with OpenJDK 11.0.17, and Mint 20.3 with

OpenJDK 11.0.17.

7.1 CLIPSJNI Directory Structure

In order to use CLIPSJNI, you must obtain the source code by downloading either the

clips_jni_641.zip or clips_jni_641.tar.gz file from the Files page on the CLIPS SourceForge web

page (see appendix A for the SourceForge URL). When uncompressed the CLIPSJNI directory

contains the following structure:

 CLIPSJNI

 bin

 animal

 auto

 clipsjni

 ide

 router

 sudoku

 wine

 java-src

 net

 sf

 clipsrules

 jni

 examples

 animal

 resources

 CLIPS Reference Manual

CLIPS Interfaces Guide

63

 auto

 resources

 ide

 resources

 router

 resources

 sudoku

 resources

 wine

 resources

 library-src

If you are using the CLIPSJNI on Windows or macOS, then the native CLIPS library is already

contained in the top-level CLIPSJNI directory.

On other systems or 32-bit systems, you must create a native library using the source files

contained in the library-src directory before you can utilize the CLIPSJNI.

The CLIPSJNI.jar file is also contained in the top-level CLIPSJNI directory. The source files used

to create the jar file are contained in the java-src directory.

7.2 Issuing Commands from the Terminal

As packaged, invoking and compiling various CLIPSJNI components requires that you enter

commands from a terminal application.

On Windows 11, to run the precompiled Java applications, launch the Command Prompt

application (enter ‘Command Prompt’ in the search field of the taskbar and then click on the

Command Prompt app). To recompile the native library or use the provided makefiles to rebuild

the Java source code, you must have Visual Studio installed. In this case, launch the Command

Prompt application by selecting Start > All apps > Visual Studio 2022 > Developer Command

Prompt for VS 2022. Using the Developer Command Prompt for VS 2022 application sets the

appropriate paths to use the Visual Studio compiler and make tools. Alternately x86 Native Tools

Command Prompt for VS 2022 or x64 Native Tools Command Prompt for VS 2022 can be used to

compile for a specific processor architecture.

On macOS, click the Spotlight icon in the menu bar, enter ‘Terminal’ in the search field, and then

double click on Terminal.app in the search results to launch the application.

On Ubuntu, click on the “Search your computer” icon, enter ‘Terminal’ in the search field, and

then click on Terminal in the search results to launch the application.

CLIPS Reference Manual

 Section 7: CLIPS Java Native Interface

64

On Fedora and Debian, click on Activities in the menu bar, click the Show Applications icon, enter

‘Terminal’ in the search field, and then click on Terminal in the search results to launch the

application.

On CentOS, click on Applications in the menu bar, click on Activities Overview, click the Show

Applications icon, enter ‘Terminal’ in the search field, and then click on Terminal in the search

results to launch the application.

On Mint, click on Menu in the lower toolbar, enter ‘Terminal’ in the search field, and then click

Terminal in the search results to launch the application.

Once the terminal has been launched, set the directory to the CLIPSJNI top-level directory (using

the cd command). Unless otherwise noted, all commands should be entered while in the CLIPSJNI

directory.

7.3 Running CLIPSJNI in Command Line Mode

You can invoke the command line mode of CLIPS through CLIPSJNI to interactively enter

commands while running within a Java environment.

On Windows and macOS, enter the following command from the CLIPSJNI directory:

java -jar CLIPSJNI.jar

On Linux, you must first create the CLIPSJNI native library (see section 7.6.3). Once created,

enter the following command from the CLIPSJNI directory:

java -Djava.library.path=. –jar CLIPSJNI.jar

The CLIPS banner and command prompt should appear:

 CLIPS (6.4.1 4/8/23)
CLIPS>

7.4 Running the Swing Demo Programs

The Swing CLIPSJNI demonstration programs can be run on Windows 11 or macOS using the

precompiled native libraries in the CLIPSJNI top-level directory. On Linux and other systems, a

CLIPSJNI native library must first be created before the programs can be run.

 CLIPS Reference Manual

CLIPS Interfaces Guide

65

7.4.1 Sudoku Demo

To run the Sudoku demo on Windows 11 or macOS, enter the following command:

java -jar SudokuDemo.jar

To run the Sudoku demo on Linux, enter the following command:

java -Djava.library.path=. –jar SudokuDemo.jar

The Sudoku Demo window should appear (Windows 11 pictured):

7.4.2 Wine Demo

To run the Wine demo on Windows 11 or macOS, enter the following command:

java -jar WineDemo.jar

To run the Wine demo on Linux, enter the following command:

java -Djava.library.path=. –jar WineDemo.jar

CLIPS Reference Manual

 Section 7: CLIPS Java Native Interface

66

The Wine Demo window should appear (macOS pictured):

7.4.3 Auto Demo

To run the Auto demo on Windows 11 or macOS, enter the following command:

java -jar AutoDemo.jar

To run the Auto demo on Linux, enter the following command:

java -Djava.library.path=. –jar AutoDemo.jar

 CLIPS Reference Manual

CLIPS Interfaces Guide

67

The Auto Demo window should appear (Ubuntu pictured):

7.4.4 Animal Demo

To run the Animal demo on Windows 11 or macOS, enter the following command:

java -jar AnimalDemo.jar

To run the Animal demo on Linux, enter the following command:

java -Djava.library.path=. –jar AnimalDemo.jar

The Animal Demo window should appear (Windows 11 pictured):

7.4.5 Router Demo

To run the Router demo on Windows 11 or macOS, enter the following command:

java -jar RouterDemo.jar

CLIPS Reference Manual

 Section 7: CLIPS Java Native Interface

68

To run the Router demo on Linux, enter the following command:

java -Djava.library.path=. –jar RouterDemo.jar

The Router Demo window should appear (macOS pictured):

7.5 Creating the CLIPSJNI JAR File

If you wish to add new functionality to the CLIPSJNI package, it is necessary to recreate the

CLIPSJNI jar file. The CLIPSJNI distribution already contains the precompiled CLIPSJNI jar file

in the top-level CLIPSJNI directory, so if you are not adding new functionality to the CLIPSJNI

package, you do not need to recreate the jar file (unless you want to create a jar file using a different

version of Java).

If you are adding new native functions to the CLIPSJNI package, it is also necessary to create the

JNI header file that is used to compile the native library. While you are in the CLIPSJNI directory,

enter the following command:

 CLIPS Reference Manual

CLIPS Interfaces Guide

69

javah -d library-src -classpath java-src -jni net.sf.clipsrules.jni.Environment

This command creates a file named net_sf_clipsrules_jni_Environment.h and places it in the

CLIPSJNI/library-src directory.

On macOS, enter the following command to compile the CLIPSJNI java source and generate the

JAR file:

make -f makefile.mac clipsjni

On Windows 11, enter the following command to compile the CLIPSJNI java source and generate

the JAR file:

nmake -f makefile.win clipsjni

On Ubuntu, enter the following command to compile the CLIPSJNI java source and generate the

JAR file:

make -f makefile.ubu clipsjni

7.6 Creating the CLIPSJNI Native Library

The CLIPSJNI distribution already contains a precompiled universal library for macOS,

libCLIPSJNI.jnilib, and for Windows, CLIPSJNI.dll, in the top-level CLIPSJNI directory. It is

necessary to create a native library only if you are using the CLIPSJNI with an operating system

other than macOS or Windows. You must also create the native library if you want to add new

functionality to the CLIPSJNI package by adding additional native functions. The steps for

creating a native library varies between operating systems, so some research may be necessary to

determine how to create one for your operating system.

7.6.1 Creating the Native Library on macOS

Launch the Terminal application (as described in section 7.2). Set the directory to the

CLIPSJNI/library-src directory (using the cd command).

To create a universal native library that can run on both Intel and ARM 64 bit architectures, enter

the following command:

make -f makefile.mac

Once you have create the native library, copy the libCLIPSJNI.jnilib file from the

CLIPSJNI/library-src to the top-level CLIPSJNI directory.

CLIPS Reference Manual

 Section 7: CLIPS Java Native Interface

70

7.6.2 Creating the Native Library on Windows 11

Launch the Terminal application (as described in section 7.2). Set the directory to the

CLIPSJNI/library-src directory (using the cd command).

To create the native library DLL, enter the following command:

nmake -f makefile.win

Once you have create the native library, copy the CLIPSJNI.dll file from the CLIPSJNI/library-

src to the top-level CLIPSJNI directory.

7.6.3 Creating the Native Library On Linux

Launch the Terminal application (as described in section 7.2). Set the directory to the

CLIPSJNI/library-src directory (using the cd command).

To create a native library, enter the following command (where <distribution> is either ubuntu,

fedora, debian, mint, or centos):

make -f makefile.lnx <distribution>

Once you have create the shared library, copy the libCLIPSJNI.so file from the CLIPSJNI/library-

src to the top-level CLIPSJNI directory.

7.7 Recompiling the Swing Demo Programs

If you want to make modification to the Swing Demo programs, you can recompile them using the

makefiles in the CLIPSJNI directory.

7.7.1 Recompiling the Swing Demo Programs on macOS

Use these commands to recompile the examples:

make –f makefile.mac sudoku

make –f makefile.mac wine

make –f makefile.mac auto

make –f makefile.mac animal

make –f makefile.mac router

 CLIPS Reference Manual

CLIPS Interfaces Guide

71

make –f makefile.mac ide

7.7.2 Recompiling the Swing Demo Programs on Windows

Use these commands to recompile the examples:

nmake –f makefile.win sudoku

nmake –f makefile.win wine

nmake –f makefile.win auto

nmake –f makefile.win animal

nmake –f makefile.win router

nmake –f makefile.win ide

7.7.3 Recompiling the Swing Demo Programs on Linux

Use these commands to recompile the examples:

make –f makefile.lnx sudoku

make –f makefile.lnx wine

make –f makefile.lnx auto

make –f makefile.lnx animal

make –f makefile.lnx router

make –f makefile.lnx ide

7.8 Internationalizing the Swing Demo Programs

The Swing Demo Programs have been designed for internationalization. Several software

generated example translations have been provided including Japanese (language code ja), Russian

(language code ru), Spanish (language code es), and Arabic (language code ar). The Sudoku and

Wine demos make use of translations just for the Swing Interface. The Auto and Animal demos

also demonstrate the use of translation text from within CLIPS. To make use of one of the

translations, specify the language code when starting the demonstration program. For example, to

run the Animal Demo in Japanese on Mac OS X, use the following command:

java -Duser.language=ja -jar AnimalDemo.jar

The welcome screen for the program should appear in Japanese rather than English:

CLIPS Reference Manual

 Section 7: CLIPS Java Native Interface

72

It may be necessary to install additional fonts to view some languages. On macOS, you can see

which languages are supported by launching ‘System Preferences’ and clicking the ‘Language &

Region’ icon. On Windows 10, you can see which languages are supported by launching Settings,

selecting ‘Time and language,’ and then selecting ‘Region and language.’

To create translations for other languages, first determine the two-character language code for the

target language. Make a copy in the resources directory of the ASCII English properties file for

the demo program and save it as a UTF-8 encoded file including the language code in the name

and using the .source extension. A list of language code is available at

http://www.mathguide.de/info/tools/languagecode.html. For example, to create a Greek

translation file for the Wine Demo, create the UTF-8 encoded WineResources_el.source file from

the ASCII WineResources.properties file. Note that this step requires that you to do more than just

duplicate the property file and rename it. You need to use a text editor that allows you to change

the encoding from ASCII to UTF-8.

Once you’ve created the translation source file, edit the values for the properties keys and replaced

the English text following each = symbol with the appropriate translation. When you have

completed the translation, use the Java native2ascii utility to create an ASCII text file from the

source file. For example, to create a Greek translation for the Wine Demo program, you’d use the

following command:

native2ascii –encoding UTF-8 WineResources_el.source WineResources_el.properties

Note that the properties file for languages containing non-ASCII characters will contain Unicode

escape sequences and is therefore more difficult to read (assuming of course that you can read the

language in the original source file). This is the reason that two files are used for creating the

translation. The UTF-8 source file is encoded so that you can read and edit the translation and the

ASCII properties file is encoded in the format expected for use with Java internationalization

features.

 CLIPS Reference Manual

CLIPS Interfaces Guide

73

The CLIPS translation files stored in the resource directory (such as animal_es.clp) can be

duplicated and edited to support new languages. The base name of each new file should end with

the appropriate two-letter language code. There is no need to convert these UTF-8 files to another

format as CLIPS can read these directly.

7.9 CLIPSJNI Classes

This section describes the classes and methods available in the CLIPSJNI.jar file for developing

CLIPS applications in Java.

7.9.1 The Environment Class

public class Environment

Java programs interacting with CLIPS must create at least one instance of the Environment class.

7.9.1.1 Constructors

public Environment()

7.9.1.2 Clearing, Loading, and Creating Constructs

public void clear() throws CLIPSException

public void load(String fileName) throws CLIPSLoadException

public void loadFromString(String loadString) throws CLIPSLoadException

public void loadFromResource(String resourceFile) throws CLIPSLoadException

public void build(String buildString) throws CLIPSException

The clear method removes all constructs from an Environment instance. The load,

loadFromString, and loadFromResource methods load constructs into an Environment

instance. The fileName parameter of the load method specifies a file path to a text file containing

constructs. The loadString parameter of the loadFromString method is a string containing

constructs. The resourceFile parameter of the loadFromResource string specifies the resource

path to a text file containing constructs. The build method loads a single construct into an

Environment instance.

7.9.1.3 Executing Rules

public void reset() throws CLIPSException

CLIPS Reference Manual

 Section 7: CLIPS Java Native Interface

74

public long run(long runLimit) throws CLIPSException

public long run() throws CLIPSException

The reset method removes all fact and instances from an Environment instance and creates the

facts and instances specified in deffacts and definstances constructs. The run method executes the

number of rules specified by the runLimit parameter or all rules if the runLimit parameter is

unspecified. The run method returns the number of rules executed (which may be less than the

runLimit parameter value).

7.9.1.4 Creating Facts and Instances

public FactAddressValue assertString(String factStr) throws CLIPSException

public InstanceAddressValue makeInstance(String instanceStr) throws CLIPSException

The assertString method asserts a fact using the deftemplate and slot values specified by the

factStr parameter. The makeInstance method creates an instance using the instance name,

defclass, and slot values specified by the instanceStr parameter.

7.9.1.5 Searching for Facts and Instances

public FactAddressValue findFact(

 String deftemplate) throws CLIPSException

public FactAddressValue findFact(

 String variable,

 String deftemplateName,

 String condition) throws CLIPSException

public List<FactAddressValue> findAllFacts(

 String deftemplateName) throws CLIPSException

public List<FactAddressValue> findAllFacts(

 String variable,

 String deftemplateName,

 String condition) throws CLIPSException

public InstanceAddressValue findInstance(

 String defclassName) throws CLIPSException

public InstanceAddressValue findInstance(

 String variable,

 String defclassName,

 String condition) throws CLIPSException

 CLIPS Reference Manual

CLIPS Interfaces Guide

75

public List<InstanceAddressValue> findAllInstances(

 String defclassName) throws CLIPSException

public List<InstanceAddressValue> findAllInstances(

 String variable,

 String defclassName,

 String condition) throws CLIPSException

The findFact methods return the first fact associated with the deftemplate construct specified by

the deftemplateName parameter. The optional variable and condition parameters can be jointly

specified to restrict the fact returned by specifying a CLIPS expression that must evaluate to a

value other FALSE in order for the fact to be returned. Each fact of the specified deftemplate will

be tested until a fact satisfying the condition is found. The fact being tested is assigned to the

CLIPS variable specified by the variable parameter and may be referenced in the condition

parameter. If no facts of the specified deftemplate exist, or no facts satisfy the condition, the value

null is returned.

The findAllFacts methods returns the list of facts associated with the deftemplate construct

specified by the deftemplateName parameter. The optional variable and condition parameters

can be jointly specified to restrict the facts returned by specifying a CLIPS expression that must

evaluate to a value other FALSE in order for a fact to be returned. Each fact of the specified

deftemplate will be tested to determine whether it will be added to the list. The fact being tested is

assigned to the CLIPS variable specified by the variable parameter and may be referenced in the

condition parameter. If no facts of the specified deftemplate exist, or no facts satisfy the condition,

a list with no members is returned.

The findInstance methods return the first instance associated with the defclass construct specified

by the defclassName parameter. The optional variable and condition parameters can be jointly

specified to restrict the instance returned by specifying a CLIPS expression that must evaluate to

a value other FALSE in order for the instance to be returned. Each instance of the specified defclass

will be tested until an instance satisfying the condition is found. The instance being tested is

assigned to the CLIPS variable specified by the variable parameter and may be referenced in the

condition parameter. If no instances of the specified defclass exist, or no instances satisfy the

condition, the value null is returned.

The findAllInstances methods returns the list of instances associated with the defclass construct

specified by the defclassName parameter. The optional variable and condition parameters can be

jointly specified to restrict the instances returned by specifying a CLIPS expression that must

evaluate to a value other FALSE in order for an instance to be returned. Each instance of the

specified defclass will be tested to determine whether it will be added to the list. The instance

being tested is assigned to the CLIPS variable specified by the variable parameter and may be

referenced in the condition parameter. If no instances of the specified defclass exist, or no

instances satisfy the condition, a list with no members is returned.

CLIPS Reference Manual

 Section 7: CLIPS Java Native Interface

76

7.9.1.5 Executing Functions and Commands

public PrimitiveValue eval(String evalStr) throws CLIPSException

The eval method evaluates the command or function call specified by the evalStr parameter and

returns the result of the evaluation.

7.9.1.6 Debugging

public void watch(String watchItem)

public void unwatch(String watchItem)

public boolean getWatchItem(String watchItem)

public void setWatchItem(String watchItem,boolean newValue)

The watchItem parameter should be one of the following static String values defined in the

Environment class: FACTS, RULES, DEFFUNCTIONS, COMPILATIONS, INSTANCES,

SLOTS, ACTIVATIONS, STATISTICS, FOCUS, GENERIC_FUNCTIONS, METHODS,

GLOBALS, MESSAGES, MESSAGE_HANDLERS, NONE, or ALL.

The watch method enables the specified watch item and the unwatch method disables the

specified watch item. The getWatchItem method returns the current state of the specified watch

item. The setWatchItem method enables the specified watch item if the newValue parameter is

true and disables it if the newValue parameter is false.

7.9.1.7 Adding and Removing User Functions

public void addUserFunction(

 String functionName,

 UserFunction callback)

public void addUserFunction(

 String functionName,

 String returnTypes,

 int minArgs,

 int maxArgs,

 String argTypes,

 UserFunction callback)

public void removeUserFunction(

 String functionName)

 CLIPS Reference Manual

CLIPS Interfaces Guide

77

The addUserFunction method associates a CLIPS function name (specified by the functionName

parameter) with an instance of a Java class implementing the UserFunction interface (specified

by the callback parameter). This allows you to call Java code from within CLIPS code. The

optional parameters returnTypes, minArg, maxArgs, and argTypes can be used to specify the

CLIPS primitive types returned by the function, the minimum and maximum number of arguments

the function is expecting, and the primitive types allowed for each argument. The UNBOUNDED

constant from the UserFunction interface can be used for the maxArgs parameter to indicate that

there is no upper limit on the number of arguments.

If the returnTypes parameter value is null, then CLIPS assumes that the UDF can return any

valid type. Specifying one or more type character codes, however, allows CLIPS to detect errors

when the return value of a UDF is used as a parameter value to a function that specifies the types

allowed for that parameter. The following codes are supported for return values and argument

types:

Type Code Type

b Boolean

d Double Precision Float

e External Address

f Fact Address

i Instance Address

l Long Long Integer

m Multifield

n Instance Name

s String

y Symbol

v Void—No Return Value

* Any Type

If the argTypes parameter value is null, then there are no argument type restrictions. One or more

character argument types can also be specified, separated by semicolons. The first type specified

is the default type (used when no other type is specified for an argument), followed by types for

specific arguments. For example, "ld" indicates that the default argument type is an integer or float;

"ld;s" indicates that the default argument type is an integer or float, and the first argument must be

a string; "*;;m" indicates that the default argument type is any type, and the second argument must

be a multifield; ";sy;ld" indicates that the default argument type is any type, the first argument

must be a string or symbol; and the second argument type must be an integer or float.

The addUserFunction method throws an IllegalArgumentException if the association fails

because one already exists for the functionName parameter.

The removeUserFunction method removes the association between a CLIPS function name and

the user function code associated the function name. You can use this to remove a previously

CLIPS Reference Manual

 Section 7: CLIPS Java Native Interface

78

created associated (either to remove it altogether or to replace the old associated with a new one).

The removeUserFunction method throws an IllegalArgumentException if no association

currently exists for the functionName parameter.

7.9.1.8 Managing Routers

public void addRouter(

 Router theRouter)

public void deleteRouter(

 Router theRouter)

public void activateRouter(

 Router theRouter)

public void deactivateRouter(

 Router theRouter)

public void print (

 String logicalName,

 String printString)

public void print(

 String printString)

public void println (

 String logicalName,

 String printString)

public void println(

 String printString)

The addRouter method adds an instance of a Java class implementing the Router interface to the

list of routers checked by CLIPS for processing I/O requests. The deleteRouter method removes

a Router instance from the list of CLIPS routers. The methods deactivateRouter and

activateRouter allow a router to be disabled/enabled without removing it from the list of routers.

The print and println methods output the string specified by the printString parameter through

the router system. These methods direct the output to the logical name specified by the

logicalName parameter. If the logicalName parameter is unspecified, output is directed to

standard output. In addition, the println method appends a carriage return to the output.

 CLIPS Reference Manual

CLIPS Interfaces Guide

79

7.9.1.9 Command Loop

public void commandLoop()

The commandLoop method starts the CLIPS Read-Eval-Print Loop (REPL) using the Java

standard input and output streams.

7.9.2 The PrimitiveValue Class and Subclasses

public abstract class PrimitiveValue

public class VoidValue extends PrimitiveValue

public abstract class NumberValue extends PrimitiveValue

public class FloatValue extends NumberValue

public class IntegerValue extends NumberValue

public abstract class LexemeValue extends PrimitiveValue

public class SymbolValue extends LexemeValue

public class StringValue extends LexemeValue

public class InstanceNameValue extends LexemeValue

public class MultifieldValue extends PrimitiveValue

 implements Iterable<PrimitiveValue>

public class FactAddressValue extends PrimitiveValue

public class InstanceAddressValue extends PrimitiveValue

The PrimitiveValue class and its subclasses constitute the Java representation of the CLIPS

primitive data types. Several methods (such as eval and getSlotValue) return objects belonging to

concrete subclasses of the PrimitiveValue class.

Several methods are provided for determining the type of a PrimitiveValue object:

public CLIPSType getCLIPSType()

public boolean isVoid()

public boolean isLexeme()

CLIPS Reference Manual

 Section 7: CLIPS Java Native Interface

80

public boolean isSymbol()

public boolean isString()

public boolean isInstanceName()

public boolean isNumber()

public boolean isFloat()

public boolean isInteger()

public boolean isFactAddress()

public boolean isInstance()

public boolean isInstanceAddress()

public boolean isMultifield()

public boolean isExternalAddress()

The getCLIPSType method returns one of the following CLIPSType enumerations: FLOAT,

INTEGER, SYMBOL, STRING, MULTIFIELD, EXTERNAL_ADDRESS, FACT_ADDRESS,

INSTANCE_ADDRESS, INSTANCE_NAME, or VOID.

Several methods are provided for creating objects belonging to the FloatValue, IntegerValue,

SymbolValue, StringValue, InstanceNameValue, MultifieldValue, and VoidValue classes:

public FloatValue()

public FloatValue(double value)

public FloatValue(Double value)

public IntegerValue()

public IntegerValue(long value)

public IntegerValue(Long value)

public SymbolValue()

public SymbolValue(String value)

public StringValue()

 CLIPS Reference Manual

CLIPS Interfaces Guide

81

public StringValue(String value)

public InstanceNameValue()

public InstanceNameValue(String value)

public MultifieldValue()

public MultifieldValue(List<PrimitiveValue> value)

public VoidValue()

The assertString and makeInstance methods of the Environment class can be used to create

objects of the FactAddressValue and InstanceAddressValue classes respectively.

The following NumberValue methods are available for retrieving the underlying Java value from

IntegerValue and FloatValue objects:

public Number numberValue()

public int intValue()

public long longValue()

public float floatValue()

public double doubleValue()

The following LexemeValue method is provided to retrieve the underlying Java value from

SymbolValue, StringValue, and InstanceNameValue objects:

public String lexemeValue()

The InstanceNameValue class also provides a method for converting an instance name to the

corresponding instance address in a specified environment:

public InstanceAddressValue getInstance(Environment theEnv)

The following MultifieldValue methods provide access to the list of PrimitiveValue objects

contained in a MultifieldValue method:

public List<PrimitiveValue> multifieldValue()

public int size()

public PrimitiveValue get(int index)

CLIPS Reference Manual

 Section 7: CLIPS Java Native Interface

82

The following FactAddressValue methods provide access to the slot values and fact index of the

associated CLIPS fact:

public PrimitiveValue getSlotValue(String slotName)

public long getFactIndex ()

The following InstanceAddressValue methods provide access to the slot values and instance

name of the associated CLIPS instance:

public PrimitiveValue getSlotValue(String slotName)

public String getInstanceName()

The following ExternalAddressValue method provides access to the value of the associated

CLIPS external address (a C pointer converted to a Java long integer):

public long getExternalAddress()

The FactAddressValue, InstanceAddressValue, and ExternalAddressValue classes provide

the following reference count methods:

public void retain()

public void release()

Since objects of these classes retain pointers to C data structures, retaining the object prevents the

C code from releasing these data structures while there are still outstanding references to them.

Each call to the retain method increments the number of reference counts to the object and each

call to the release method decrements the number of reference counts to the object.

7.9.3 The CLIPSException and CLIPSLoadException Classes

public class CLIPSException extends Exception

public class CLIPSLoadException extends CLIPSException

CLIPSJNI provides two subclasses of the Exception class for methods generating errors: CLIPS

Exception and CLIPSLoadException.

7.9.3.1 CLIPSLoadException Methods

public List<CLIPSLineError> getErrorList()

 CLIPS Reference Manual

CLIPS Interfaces Guide

83

public class CLIPSLineError

Loading constructs can generate multiple errors, so the getErrorList method of the

CLIPSLoadException class returns the list of CLIPSLineError objects detailing each error.

7.9.3.1.1 CLIPSLineError Methods

public String getFileName()

public long getLineNumber()

public String getMessage()

The getFileName, getLineNumber, and getMessage respectively return the file name, line

number, and error message associated with a CLIPSLineError object.

7.9.4 The Router Interface

public interface Router

The Router interface allows Java objects implementing the interface to interact with the CLIPS

I/O router system.

7.9.4.1 Required Methods

public int getPriority()

public String getName()

public boolean query(String logicalName)

public void write(String logicalName,String writeString)

public int read(String logicalName)

public int unread(String logicalName,int theChar)

public void exit(boolean failure)

The getPriority method returns the integer priority of the router. Routers with higher priorities are

queried before routers of lower priority to determine if they can process an I/O request. The

getName method returns the identifier associated with the router. The query method is called to

determine if the router handles I/O requests for the logicalName parameter. It should return true

if the router can process the request, otherwise it should return false. The write method is called

to output the value specified by the writeString parameter to the logicalName parameter. The

read method returns an input character for the logicalName parameter. It should return -1 if no

CLIPS Reference Manual

 Section 7: CLIPS Java Native Interface

84

characters are available in the input queue. The unread method places the character specified by

parameter theChar back on the input queue so that it is available for the next read request. It

returns the value of parameter theChar if successful, otherwise it returns -1. The exit method is

invoked when the CLIPS exit command is issued or an unrecoverable error occurs. The failure

parameter will either be false for an exit command or true for an unrecoverable error.

7.9.4.2 Predefined Router Names

public static final String STDIN

public static final String STDOUT

public static final String STDWRN

public static final String STDERR

The String constants STDIN, STDOUT, STDWRN, and STDERR are the standard predefined

logical names used by CLIPS.

7.9.4.3 The BaseRouter Class

public class BaseRouter implements Router

The BaseRouter class is an implementation of the Router interface. Its write, read, unread, and

exit methods are minimal implementations; the write and exit methods execute no statements and

the read and unread methods always return -1. Subclasses can override these methods as needed

to create functional routers.

7.9.4.3.1 Constructors

public BaseRouter (

 Environment env,

 String [] queryNames)

public BaseRouter(

 Environment env,

 String [] queryNames,

 int priority)

public BaseRouter(

 Environment env,

 String [] queryNames,

 int priority,

 String routerName)

 CLIPS Reference Manual

CLIPS Interfaces Guide

85

The BaseRouter constructor requires the env and queryName parameters. Optionally, the

priority parameter or the priority and routerName parameters can be supplied. The env

parameter is the Environment object associated with the Router object. The queryNames

parameter is an Array of strings used by the query method of the BaseRouter object to determine

whether the router handles I/O for a specific logical name. The priority parameter is the priority

of the router; if it is unspecified, it defaults to 0. The routerName parameter is the name that

serves as an identifier for the BaseRouter object; if it is unspecified an identifier will be generated

for the router.

7.9.5 The UserFunction Interface

public interface UserFunction

The UserFunction interface provides a method for invoking a Java method from CLIPS code.

7.9.5.1 Required Methods

public PrimitiveValue evaluate (List<PrimitiveValue> arguments)

Once a linkage has been made between a CLIPS function name and an object implementing the

UserFunction interface, the evaluate method is invoked when the linked CLIPS function call is

executed. The function arguments are evaluated and passed to the evaluate method via the

arguments parameter.

7.9.5.2 Constants

public static final int UNBOUNDED

The UNBOUNDED constant can be used for the maxArgs parameter of the AddUserFunction

method of the Environment class to indicate that there is no upper limit on the number of

arguments.

7.9.6 Examples

The following examples assume the example code is placed in the top-level CLIPSJNI directory.

Additionally the native libraries must be built and present in the directory (either

libCLIPSJNI.jnilib for macOS, CLPSJNI.dll for Windows, or libCLIPSJNI.so for Linux). The

CLIPSJNI Java source files should also be compiled using the appropriate command for Windows,

macOS, or Linux:

make -f makefile.win clipsjni
make -f makefile.mac clipsjni
make -f makefile.lnx clipsjni

CLIPS Reference Manual

 Section 7: CLIPS Java Native Interface

86

7.9.6.1 Loading Constructs from a JAR file

This example demonstrates how to load a CLIPS source file that has been stored inside a JAR file.

First, create the source file hello.clp within the CLIPSJNI directory with the following content:

(defrule hello
 =>
 (println "Hello World"))

Next create the Java source file Example.java with the following content:

import net.sf.clipsrules.jni.*;

public class Example
 {
 public static void main(String args[])
 {
 Environment clips;

 clips = new Environment();

 try
 {
 clips.loadFromResource("/hello.clp");
 clips.reset();
 clips.run();
 }
 catch (Exception e)
 { e.printStackTrace(); }
 }
 }

Next, compile the Java source and create a jar file to contain the Example class, the CLIPSJNI

classes, and the CLIPS construct file:

$ javac -cp CLIPSJNI.jar Example.java
$ jar -cfe Example.jar Example Example.class
$ jar -uf Example.jar -C bin/clipsjni net
$ jar -uf Example.jar hello.clp
$

Finally, run the program:

$ java -jar Example.jar
Hello World
$

 CLIPS Reference Manual

CLIPS Interfaces Guide

87

7.9.6.2 Fact Query

This example demonstrates how to query CLIPS to retrieve facts.

First create the Java source file Example.java with the following content:

import net.sf.clipsrules.jni.*;

import java.util.List;

public class Example
 {
 public static void main(String args[])
 {
 Environment clips;

 clips = new Environment();

 try
 {
 clips.build("(deftemplate person (slot name) (slot age))");

 clips.assertString("(person (name \"Fred Jones\") (age 17))");
 clips.assertString("(person (name \"Sally Smith\") (age 23))");
 clips.assertString("(person (name \"Wally North\") (age 35))");
 clips.assertString("(person (name \"Jenny Wallis\") (age 11))");

 System.out.println("All people:");

 List<FactAddressValue> people = clips.findAllFacts("person");

 for (FactAddressValue p : people)
 { System.out.println(" " + p.getSlotValue("name")); }

 System.out.println("Adults:");

 people = clips.findAllFacts("?f","person","(>= ?f:age 18)");

 for (FactAddressValue p : people)
 { System.out.println(" " + p.getSlotValue("name")); }

 }
 catch (Exception e)
 { e.printStackTrace(); }
 }
 }

Next, compile the Java source and create a jar file to contain the Example and CLIPSJNI classes:

$ javac -cp CLIPSJNI.jar Example.java
$ jar -cfe Example.jar Example Example.class
$ jar -uf Example.jar -C bin/clipsjni net
$

CLIPS Reference Manual

 Section 7: CLIPS Java Native Interface

88

Finally, run the program:

$ java -jar Example.jar
All people:
 "Fred Jones"
 "Sally Smith"
 "Wally North"
 "Jenny Wallis"
Adults:
 "Sally Smith"
 "Wally North"
$

7.9.6.3 Big Integer Multiplication User Function

This example demonstrates how to add a user function to multiply two numbers together using

big integer math. It also demonstrates using the eval method to evaluate a CLIPS function call.

First create the Java source file Example.java with the following content:

import net.sf.clipsrules.jni.*;

import java.util.List;
import java.math.BigInteger;

public class Example
 {
 public static void main(String args[])
 {
 Environment clips;

 clips = new Environment();

 clips.addUserFunction("bi*","s",2,Router.UNBOUNDED,"s",
 new UserFunction()
 {
 public PrimitiveValue evaluate(List<PrimitiveValue> arguments)
 {
 LexemeValue lv = (LexemeValue) arguments.get(0);
 BigInteger rv = new BigInteger(lv.lexemeValue());

 for (int i = 1; i < arguments.size(); i++)
 {
 lv = (LexemeValue) arguments.get(i);
 rv = rv.multiply(new BigInteger(lv.lexemeValue()));
 }

 return new StringValue(rv.toString());
 }
 });

 CLIPS Reference Manual

CLIPS Interfaces Guide

89

 try
 {
 System.out.println("(* 9 8) = " +
 clips.eval("(* 9 8)"));
 System.out.println("(bi* \"9\" \"8\") = " +
 clips.eval("(bi* \"9\" \"8\")"));
 System.out.println("(* 4294967296 4294967296) = " +
 clips.eval("(* 4294967296 4294967296)"));
 System.out.println("(bi* \"4294967296\" \"4294967296\") = " +
 clips.eval("(bi* \"4294967296\" \"4294967296\")"));
 }
 catch (Exception e)
 { e.printStackTrace(); }
 }
 }

Next, compile the Java source and create a jar file to contain the Example and CLIPSJNI classes:

$ javac -cp CLIPSJNI.jar Example.java
$ jar -cfe Example.jar Example Example*.class
$ jar -uf Example.jar -C bin/clipsjni net
$

Finally, run the program:

$ java -jar Example.jar
(* 9 8) = 72
(bi* "9" "8") = "72"
(* 4294967296 4294967296) = 0
(bi* "4294967296" "4294967296") = "18446744073709551616"
$

7.9.6.4 Get Properties User Function

This example demonstrates how to add a user function that returns a multifield value containing

the list of system properties.

First create the Java source file Example.java with the following content:

import net.sf.clipsrules.jni.*;

import java.util.ArrayList;
import java.util.List;
import java.util.Properties;

public class Example
 {
 public static void main(String args[])
 {
 Environment clips;

 clips = new Environment();

CLIPS Reference Manual

 Section 7: CLIPS Java Native Interface

90

 clips.addUserFunction("get-properties","m",0,0,null,
 new UserFunction()
 {
 public PrimitiveValue evaluate(List<PrimitiveValue> arguments)
 {
 List<PrimitiveValue> values = new ArrayList<PrimitiveValue>();

 Properties props = System.getProperties();
 for (String key : props.stringPropertyNames())
 { values.add(new SymbolValue(key)); }

 return new MultifieldValue(values);
 }
 });

 clips.commandLoop();
 }
 }

Next, compile the Java source and create a jar file to contain the Example and CLIPSJNI classes:

$ javac -cp CLIPSJNI.jar Example.java
$ jar -cfe Example.jar Example Example*.class
$ jar -uf Example.jar -C bin/clipsjni net
$

Finally, run the program:

$ java -jar Example.jar
 CLIPS (6.4.1 4/8/23)
CLIPS> (get-properties)
(java.runtime.name sun.boot.library.path java.vm.version gopherProxySet
java.vm.vendor java.vendor.url path.separator java.vm.name file.encoding.pkg
user.country sun.java.launcher sun.os.patch.level java.vm.specification.name
user.dir java.runtime.version java.awt.graphicsenv java.endorsed.dirs os.arch
java.io.tmpdir line.separator java.vm.specification.vendor os.name
sun.jnu.encoding java.library.path java.specification.name java.class.version
sun.management.compiler os.version http.nonProxyHosts user.home user.timezone
java.awt.printerjob file.encoding java.specification.version user.name
java.class.path java.vm.specification.version sun.arch.data.model java.home
sun.java.command java.specification.vendor user.language awt.toolkit java.vm.info
java.version java.ext.dirs sun.boot.class.path java.vendor file.separator
java.vendor.url.bug sun.cpu.endian sun.io.unicode.encoding socksNonProxyHosts
ftp.nonProxyHosts sun.cpu.isalist)
CLIPS> (exit)
$

 CLIPS Reference Manual

CLIPS Interfaces Guide 91

Appendix A:

Support Information

A.1 Questions and Information

The URL for the CLIPS Web page is clipsrules.net.

Questions regarding CLIPS can be posted to one of several online forums including the CLIPS

Expert System Group, groups.google.com/group/CLIPSESG/, the SourceForge CLIPS Forums,

sourceforge.net/forum/?group_id=215471, and Stack Overflow,

stackoverflow.com/questions/tagged/clips.

Inquiries related to the use or installation of CLIPS can be sent via electronic mail to

support@clipsrules.net.

A.2 Documentation

The CLIPS Reference Manuals and other documentation are available at

clipsrules.net/Documentation.html.

Adventures in Rule-Based Programming is a fun introduction to writing applications using CLIPS.

In this tutorial you’ll learn the basic concepts of rule-based programming, where rules are used to

specify the logic of what must be accomplished, but an inference engine determines when rules

are applied. You’ll incrementally create a fully functional text adventure game, and in the process,

learn how to write, organize, debug, test, and deploy CLIPS code. Visit clipsrules.net/airbp for

more information.

Expert Systems: Principles and Programming, 4th Edition, by Giarratano and Riley comes with a

CD-ROM containing CLIPS 6.22 executables (DOS, Windows XP, and Mac OS), documentation,

and source code. The first half of the book is theory oriented and the second half covers rule-based,

procedural, and object-oriented programming using CLIPS.

A.3 CLIPS Source Code and Executables

CLIPS executables and source code are available on the SourceForge web site at

sourceforge.net/projects/clipsrules/files.

http://clipsrules.net/
http://groups.google.com/group/CLIPSESG/
http://sourceforge.net/forum/?group_id=215471
http://stackoverflow.com/questions/tagged/clips
mailto:support@clipsrules.net
http://clipsrules.net/Documentation.html
http://clipsrules.net/airbp
http://sourceforge.net/projects/clipsrules/files

CLIPS Reference Manual

92 Appendix B: Update Release Notes

Appendix B:

Update Release Notes

The following changes were introduced in version 6.4.1 of CLIPS.

• Compiler Support - The following compilers are now supported.

• Xcode 14.3.

• Microsoft Visual Studio Community 2022.

 CLIPS Reference Manual

CLIPS Interfaces Guide 93

Index

activateRouter, 78

ActivateRouter, 49

addRouter, 78

AddRouter, 49

addUserFunction, 76

AddUserFunction, 48

Advanced Programming Guide, vii

AnimalFormsExample, 41

AnimalWPFExample, 41

assertString, 74

AssertString, 45

AutoFormsExample, 41

AutoWPFExample, 41

BaseRouter, 55, 84

Basic Programming Guide, vii

build, 73

Build, 45

clear, 73

Clear, 44

CLIPSCLRWrapper, 41

CLIPSException, 45, 54, 82

CLIPSJNI, 38

CLIPSLoadException, 45, 54, 82

CLIPSType, 51

commandLoop, 79

CommandLoop, 50

deactivateRouter, 78

DeactivateRouter, 50

deleteRouter, 78

DeleteRouter, 49

DLL, 38

DLLExample, 39

Environment, 44, 73

eval, 76

Eval, 47

evaluate, 85

exit, 83

Exit, 55

ExternalAddressValue, 51

FactAddressValue, 51, 79

findAllFacts, 74

FindAllFacts, 46

findAllInstances, 75

FindAllInstances, 46

findFact, 74

FindFact, 46

findInstance, 74

FindInstance, 46

FloatValue, 50, 52, 79, 80

getCLIPSType, 79

getErrorList, 82

getExternalAddress, 82

getFactIndex, 82

getFileName, 83

GetInstance, 53

getInstanceName, 82

getLineNumber, 83

getMessage, 83

getName, 83

getPriority, 83

getSlotValue, 82

GetSlotValue, 53

getWatchItem, 76

GetWatchItem, 47

InstanceAddressValue, 51, 79

InstanceNameValue, 51, 52, 79, 81

IntegerValue, 50, 52, 79, 80

Interfaces Guide, vii

isExternalAddress, 80

IsExternalAddress, 52

isFactAddress, 80

IsFactAddress, 51

isFloat, 80

IsFloat, 51

CLIPS Reference Manual

94 Index

isInstance, 80

IsInstance, 51

isInstanceAddress, 80

IsInstanceAddress, 51

isInstanceName, 80

IsInstanceName, 51

isInteger, 80

IsInteger, 51

isLexeme, 79

IsLexeme, 51

isMultifield, 80

IsMultifield, 51

isNumber, 80

IsNumber, 51

isString, 80

IsString, 51

isSymbol, 80

IsSymbol, 51

isVoid, 79

IsVoid, 51

LexemeValue, 51, 79

load, 73

Load, 44

loadFromResource, 73

LoadFromResource, 45

loadFromString, 73

LoadFromString, 44

makeInstance, 74

MakeInstance, 45

MultifieldValue, 51, 52, 79, 81

NumberValue, 50, 79

PrimitiveValue, 50, 79

print, 78

println, 78

query, 83

Query, 55

read, 83

Read, 55

Reference Manual, vii

removeUserFunction, 76

RemoveUserFunction, 48

reset, 73

Reset, 45

Router, 54, 83

RouterFormsExample, 41

RouterWPFExample, 41

run, 74

Run, 45

setWatchItem, 76

SetWatchItem, 47

STDERR, 55, 84

STDIN, 55, 84

STDOUT, 55, 84

STDWRN, 55, 84

StringValue, 51, 52, 79, 80

SymbolValue, 51, 52, 79, 80

UNBOUNDED, 85

unread, 83

Unread, 55

unwatch, 76

Unwatch, 47

User’s Guide, vii

UserFunction, 56, 85

VoidValue, 50, 52, 79, 81

watch, 76

Watch, 47

WineFormsExample, 41

WineWPFExample, 41

WrappedDLL, 38

WrappedDLLExample, 39

WrappedLib, 38

WrappedLibExample, 39

write, 83

Write, 50, 55

WriteLine, 50

	License Information
	Preface
	Section 1: Introduction
	Section 2: CLIPS .NET IDE
	2.1 The File Menu
	2.1.1 Quit

	2.2 The Edit Menu
	2.2.1 Cut (Ctrl+X)
	2.2.2 Copy (Ctrl+C)
	2.2.3 Paste (Ctrl+V)
	2.2.4 Set Dialog Font... (Ctrl+V)
	2.2.5 Set Browser Font... (Ctrl+V)

	2.3 The Environment Menu
	2.3.1 Clear
	2.3.2 Load Constructs... (Ctrl+L)
	2.3.3 Load Batch... (Ctrl+Shift+L)
	2.3.4 Set Directory…
	2.3.5 Reset (Ctrl+R)
	2.3.6 Run (Ctrl+Shift+R)
	2.3.7 Halt Rules (Ctrl+H)
	2.3.8 Halt Execution (Ctrl+Shift+H)
	2.3.9 Clear Scrollback

	2.5 The Debug Menu
	2.5.1 Watch Submenu
	2.5.2 Agenda Browser
	2.5.3 Fact Browser
	2.5.4 Instance Browser

	2.6 The Help Menu
	2.6.1 CLIPS Home Page
	2.6.2 Online Documentation
	2.6.3 Online Examples
	2.6.4 CLIPS Expert System Group
	2.6.5 SourceForge Forums
	2.6.6 Stack Overflow Q&A
	2.6.7 About CLIPS IDE

	2.8 Building the Windows Executables
	2.8.1 Building CLIPSIDE Using Microsoft Visual Studio Community 2022
	2.8.2 Building CLIPSDOS Using Microsoft Visual Studio Community 2022

	Section 3: CLIPS macOS IDE
	3.1 The CLIPS IDE Menu
	3.1.1 About CLIPS
	3.1.2 Preferences... (⌘,)
	3.1.2.1 Dialog Tab
	3.1.2.2 Editor Tab

	3.1.3 Quit CLIPS IDE (⌘Q)

	3.2 The File Menu
	3.2.1 New (⌘N)
	3.2.2 Open... (⌘O)
	3.2.3 Open Recent
	3.2.4 Close (⌘W)
	3.2.5 Save (⌘S)
	3.2.6 Save As... (⇧⌘S)
	3.2.7 Revert
	3.2.8 Page Setup... (⇧⌘P)
	3.2.9 Print... (⌘P)

	3.3 The Edit Menu
	3.3.1 Undo (⌘Z)
	3.3.2 Redo (⇧⌘Z)
	3.3.3 Cut (⌘X)
	3.3.4 Copy (⌘C)
	3.3.5 Paste (⌘V)
	3.3.6 Delete
	3.3.7 Select All (⌘A)
	3.3.8 Find Submenu
	3.3.8.1 Find... (F)
	3.3.8.2 Find Next (⌘G)
	3.3.8.3 Find Previous (⇧⌘G)
	3.3.8.4 Use Selection for Find (⌘E)
	3.3.8.5 Jump to Selection (⌘J)

	3.4 The Text Menu
	3.4.1 Load Selection (⌘K)
	3.4.2 Batch Selection (⇧⌘K)
	3.4.3 Load Buffer
	3.4.4 Balance (⌘B)
	3.4.5 Comment
	3.4.6 Uncomment

	3.5 The Environment Menu
	3.5.1 Clear
	3.5.2 Load Constructs... (⌘L)
	3.5.3 Load Batch... (⇧⌘L)
	3.5.4 Set Directory…
	3.5.5 Reset (⌘R)
	3.5.6 Run (⇧⌘R)
	3.5.7 Halt Rules (⌘.)
	3.5.8 Halt Execution (⇧⌘.)
	3.5.9 Clear Scrollback

	3.6 The Debug Menu
	3.6.1 Watch Submenu
	3.6.2 Agenda Browser
	3.6.3 Fact Browser
	3.6.4 Instance Browser
	3.6.5 Construct Inspector

	3.7 The Window Menu
	3.8 The Help Menu
	3.8.1 CLIPS Home Page
	3.8.2 Online Documentation
	3.8.3 Online Examples
	3.8.4 CLIPS Expert System Group
	3.8.5 SourceForge Forums
	3.8.6 Stack Overflow Q&A

	3.9 Creating the macOS Executables
	3.9.1 Building the CLIPS IDE Using Xcode 14.3

	Section 4: CLIPS Swing IDE
	4.2 The File Menu
	4.2.1 New (^-N)
	4.2.2 Open... (^-O)
	4.2.3 Save (^-S)
	4.2.4 Save As... (^+⇧-S)
	4.2.5 Page Setup...
	4.2.6 Print...
	4.2.7 Quit CLIPS IDE (^-Q)

	4.3 The Edit Menu
	4.3.1 Undo (^-Z)
	4.3.2 Redo (^+⇧-Z)
	4.3.3 Cut (^-X)
	4.3.4 Copy (^-C)
	4.3.5 Paste (^-V)
	4.3.6 Set Font...

	4.4 The Text Menu
	4.4.1 Load Selection (^-K)
	4.4.2 Batch Selection (^+⇧-K)
	4.4.3 Load Buffer
	4.4.4 Balance (^-B)
	4.4.5 Comment
	4.4.6 Uncomment

	4.5 The Environment Menu
	4.5.1 Clear
	4.5.2 Load Constructs... (^-L)
	4.5.3 Load Batch... (^+⇧-L)
	4.5.4 Set Directory…
	4.5.5 Reset (^-R)
	4.5.6 Run (^+⇧-R)
	4.5.7 Halt Rules (^-.)
	4.5.8 Halt Execution (^+⇧-.)
	4.5.9 Clear Scrollback

	4.6 The Debug Menu
	4.6.1 Watch Submenu
	4.6.2 Agenda Browser
	4.6.3 Fact Browser
	4.6.4 Instance Browser
	4.6.5 Construct Inspector

	4.7 The Window Menu
	4.8 The Help Menu
	4.8.1 CLIPS Home Page
	4.8.2 Online Documentation
	4.8.3 Online Examples
	4.8.4 CLIPS Expert System Group
	4.8.5 SourceForge Forums
	4.8.6 Stack Overflow Q&A
	4.8.7 About CLIPS IDE

	4.9 Creating the Swing IDE Executable

	Section 5: CLIPS DLL Interface
	5.1 Installing the Source Code
	5.2 Building the CLIPS Libraries
	5.2.1 Building the Projects Using Microsoft Visual Studio Community 2022

	5.3 Running the Library Examples
	5.3.1 Building the Examples Using Microsoft Visual Studio Community 2022

	Section 6: CLIPS .NET Interface
	6.1 Installing the Source Code
	6.2 Building the .NET Library and Example Executables
	6.2.1 Building the Projects Using Microsoft Visual Studio Community 2022

	6.3 Running the .NET Demo Programs
	6.3.1 Wine Demo
	6.3.2 Auto Demo
	6.3.3 Animal Demo
	6.3.4 Router Demo

	6.4 CLIPS .NET Classes
	6.4.1 The Environment Class
	6.4.1.1 Constructors
	6.4.1.2 Clearing, Loading, and Creating Constructs
	6.4.1.3 Executing Rules
	6.4.1.4 Creating Facts and Instances
	6.5.1.5 Searching for Facts and Instances
	6.5.1.5 Executing Functions and Commands
	6.5.1.6 Debugging
	6.5.1.7 Adding and Removing User Functions
	6.5.1.8 Managing Routers
	6.5.1.9 Command Loop

	6.5.2 The PrimitiveValue Class and Subclasses
	6.5.3 The CLIPSException and CLIPSLoadException Classes
	6.5.3.1 CLIPSLoadException Properties
	6.5.3.1.1 CLIPSLineError Properties

	6.5.4 The Router Class
	6.5.4.1 Required Properties and Methods
	6.5.4.2 Predefined Router Names
	6.5.4.3 The BaseRouter Class
	6.5.4.3.1 Constructors

	6.5.5 The UserFunction Class
	6.5.5.1 Required Methods
	6.5.5.2 Constants

	6.5.6 Examples
	6.5.6.1 Loading Constructs from an Embedded Resource file
	6.5.6.2 Fact Query
	6.5.6.3 Big Integer Multiplication User Function
	6.5.6.4 Get Properties User Function

	Section 7: CLIPS Java Native Interface
	7.1 CLIPSJNI Directory Structure
	7.2 Issuing Commands from the Terminal
	7.3 Running CLIPSJNI in Command Line Mode
	7.4 Running the Swing Demo Programs
	7.4.1 Sudoku Demo
	7.4.2 Wine Demo
	7.4.3 Auto Demo
	7.4.4 Animal Demo
	7.4.5 Router Demo

	7.5 Creating the CLIPSJNI JAR File
	7.6 Creating the CLIPSJNI Native Library
	7.6.1 Creating the Native Library on macOS
	7.6.2 Creating the Native Library on Windows 11
	7.6.3 Creating the Native Library On Linux

	7.7 Recompiling the Swing Demo Programs
	7.7.1 Recompiling the Swing Demo Programs on macOS
	7.7.2 Recompiling the Swing Demo Programs on Windows
	7.7.3 Recompiling the Swing Demo Programs on Linux

	7.8 Internationalizing the Swing Demo Programs
	7.9 CLIPSJNI Classes
	7.9.1 The Environment Class
	7.9.1.1 Constructors
	7.9.1.2 Clearing, Loading, and Creating Constructs
	7.9.1.3 Executing Rules
	7.9.1.4 Creating Facts and Instances
	7.9.1.5 Searching for Facts and Instances
	7.9.1.5 Executing Functions and Commands
	7.9.1.6 Debugging
	7.9.1.7 Adding and Removing User Functions
	7.9.1.8 Managing Routers
	7.9.1.9 Command Loop

	7.9.2 The PrimitiveValue Class and Subclasses
	7.9.3 The CLIPSException and CLIPSLoadException Classes
	7.9.3.1 CLIPSLoadException Methods
	7.9.3.1.1 CLIPSLineError Methods

	7.9.4 The Router Interface
	7.9.4.1 Required Methods
	7.9.4.2 Predefined Router Names
	7.9.4.3 The BaseRouter Class
	7.9.4.3.1 Constructors

	7.9.5 The UserFunction Interface
	7.9.5.1 Required Methods
	7.9.5.2 Constants

	7.9.6 Examples
	7.9.6.1 Loading Constructs from a JAR file
	7.9.6.2 Fact Query
	7.9.6.3 Big Integer Multiplication User Function
	7.9.6.4 Get Properties User Function

	Appendix A: Support Information
	A.1 Questions and Information
	A.2 Documentation
	A.3 CLIPS Source Code and Executables

	Appendix B: Update Release Notes
	Index

